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STUDYING THE PHYSICS AND OPERATION OF MULTI-TERMINAL NEAR-MICRON

AND SUB-MICRON LENGTH, HOT ELECTRON SEMICONDUCTOR DEVICES

ABSTRACT

This document summarizes work sponsored by the Office of Naval Research under

contract N00014-81-C-0452. The study encompasses a broad examination of

transport in submicron and near-micron semiconductor devices through

implementation of the moments of the Boltzmann transport equation and the

semiconductor drift and diffusion equation. The study utilized advanced
algorithms developed at Scientific Research Associates, and recommends

development of a network of user based algorithms for closely combined

theoretical/experimental interactions.
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I. INTRODUCTION

During the past decade there has been a remarkable resurgence of interest in
the physics of nonlinear semiconductor devices and transport. The
technological reason for this interest has been the rapidly moving VLSI and
VHSIC programs. These programs have been geared primarily to the development
of conventionally conceived devices fabricated on a submicron scale, and have
provided the primary motivation for most submicron programs. While the VLSI
and VHSIC developments have provided new military and commercial gains, it was
clear from the outset that potential accomplishments in this program would be
limited by weaknesses in the understanding of semiconductor device physics,
and by design rules based upon the mobility concept, where the carriers
responded instantaneously to changes in the electric field. The scientific
reason for the interest in the physics of nonlinear transport has been the
increasing availability of new numerical, analytical and experimental tools,
enabling a careful reexamination of the assumptions underlying semiconductor
device operation.

During the tenure of this contract, workers at Scientific Research Associates,
Inc. of Glastonbury, Connecticut (SRA) undertook the development of
state-of-the-art algorithms to enable a suitable description of transport in
micron length, submicron length and ultrasubmicron length semiconductor
devices. The study involved development of the drift and diffusion equations
for application to heterostructure transport, the development of the moments
of the Boltzmann transport equation for application to near and submicron
transport incorporating heterostructure contributions, the initiation of
quantum transport algorithms for examining transport in angstrom scale devices.

Numerous papers were written and lectures given. The resulting programs were
used in other government programs within the Navy, such as the Naval Research
Laboratories, and within other government agencies such as: (1) the Army
Research Office, (2) the Air Force Office of Scientific Research, (3) Air
Force Wright Aeronautical Laboratories / Avionics Laboratory, (4) Defense
Advanced Research Project Aency, (5) Defense Nuclear Agency, (6) U.S. Army,
Electronics Technology and Devices Laboratory, (7) NASA / Goddard. In many
cases comparisons were made to experiment to provide verification of the
results. This document suarizes some of the findings of the study.
However, before we proceed with a summary of the results, it is perhaps useful
to discuss several specific issues associated with numerical simulation.

It is a widely accepted view, that interpretation of experiments and the
design of new devices benefits from a deep understanding of the manner in
which these devices operate. In the absence of any understanding, or with
only marginal descriptions of phenomena, workers will proceed to design
devices and develop experiments based upon intuitive notions of the results to
be expected. These procedures have in the past been augmented by judicious
use of numerical simulations, and there is increasing interest in enhanced use
of numerical methods to deepen intuition. Unfortunately, there is a major
bottleneck to efficient use of numerical methods. Presently, there are only a
handful of centers developing state-of-the-art algorithms for application to
submicron and ultrasubmicron devices. These algorithms are primarily research S-l -



algorithms, and are not generally accessible to large defense contractors, or
to universities. Indeed, because of the research nature of the present
contract much of the algorithm work undertaken during the course of the study
was not developed with the idea of broad dissemination. In other words,
experts are required to use these research codes. This is a weakness that
must be overcome, if numerical procedures are to have the major role that they
are capable of developing. One recommendation of the study, based upon the
needs of workers in the field, is that procedures be established for an
orderly transition of 'research-based' algorithms to 'user-based' algorithms,
and that these algorithms be made available to universities for the training
of young scientists and engineers, and to industry for use in engineering
lines.

II. INADEQUACY OF THE MOBILITY CONCEPT

The inadequacy of the mobility concept for submicron length high speed devices
was raised implicitly by Butcher and Hearn in 1968 and Rees in 1969, and by
Ruch in 1972. Indeed Ruch's paper was a watershed for device transport
studies insofar as it focused attention on accelerative effects of transport,
and demonstrated that the response of carriers to a sudden change in electric
field was considerably different from that associated with the mobility
models. In fact, theoretical values of peak electron velocities nearly four
times that of the steady state electron velocities of GaAs were predicted.
These values emerged from transient calculations, and workers soon began to
predict that electrons would be able to travel significant distances without
collisions, i.e., ballistically. Experiments were reported to have measured
velocity overshoot, as the excess velocity was named, and measurements of
ballistic transport were purported to have been obtained. Where do we now
stand with respect to the transient phenomena first reported by Ruch?

It is currently accepted by most workers involved in submicron device
transport that velocity overshoot exists in all devices currently being
designed. But apart from shrinking device scales, e.g., gate length and
source to drain separation, and recognizing that very tiny devices are likely
to lead to degradation in specific device parameters such as forward
conductance, there is very little device design that has been scheduled for
military or commercial use that incorporates key nonequilibrium transport
phenomena. There have been many attempts including repeated overshoot
structures, ballistically launched field effect transistors, the hot electron
transistor, the THETA device, etc. These attempts will continue, but the
devices that will likely have the most success in incorporating nonequilibrium
phenomena into their design are those that pay considerable respect to one key
effect absent from the early transient calculations-the influence of space
charge. The influence of space charge should be apparent, because it is
current that is measured in most of the structures of interest; and current -

dQ/dt -qnv. Thus the product of carrier density and velocity enter, and the
carrier density in nowhere uniform. Current studies of the hot electron
transistor and of the THETA device, include examining the role of space charge
on device operation, but here caution is in order. Information on operation
of the device is extracted from spectral measurements, and the connection to
space charge is not clear. What is needed, as an adjunct to all of these
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experiments is an adjacent user-based algorithm that can address 'what if'
questions. These 'what if' questions form one basis for an emergent field we
have called the numerical physics of semiconductor devices.

The numerical physics of semiconductor devices serves to determine the
temporal and spatial transient dependence of submicron and ultrasubmicron
length semiconductor devices and to account for the environment surrounding
the device. Under the present study the temporal and spatial transients have
been obtained primarily through implementation of the moments of the Boltzmann
transport equation. More recently Monte Carlo procedures have been
implemented, as have algorithms for examining quantum transport in
ultrasubmicron devices. In the discussion below, nonequilibrium transport
means solutions to the moments of the Boltzmann transport equation.
Equilibrium solutions mean solution to the drift and diffusion equations.

A variety of key results have emerged as a result of these studies:

In two terminal devices, current transients are not necessarily dominated
by velocity overshoot--displacement current effects can yield transients
on the same time scale as velocity transients.

In high mobility submicron devices, transport is dominated by gamma
valley carriers. High speed devices require high mobility materials.

Equilibrium saturated drift velocity is not a figure of merit for
submicron devices.

Two terminal submicron devices do not sustain negative conductance
associated with electron transfer to low mobility bands.

Nonequilibrium transport in two terminal devices leads to current drives
significantly above that associated with equilibrium calculations.

Three terminal nonequilibrium calculations demonstrate the presence of
current levels that are of the order of three times that associated with
steady state values. Space charge calculations are sometimes
qualitatively similar to that obtained from equilibrium calculations,
often they are different.

Three terminal nonequilibrium calculations in the absence of substrate.
as in the permeable base transistor, show the presence of an electron
transfer induced negative conductance, as seen experimentally. Three
terminal equilibrium calculations do not show the negative conductance.

In addition to the above results, the following were introduced.

Nonequilibrium and equilibrium algorithms were modified to include the
presence of heterostructure interfaces. The algorithms have been
implemented.

Algorithms were developed and implemented for solving the single particle
time dependent Schrodinger equation. The equation was solved 0
simultaneously with Poisson's equation, for tunneling devices.
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Moments of the Wigner function and of the density macrix were formulated
for performing time dependent transient calculations. Algorithms for the
density matrix equation were developed during the succeeding contract.

III. THE EQUATIONS USED IN THE STUDY

The specific moment equations (obtained by multiplying the Boltzmann transport
equation by an arbitary function, Q(k,r), and intergrating over momentum
space) used in the study have been discussed in a variety of publications.
Their most complete forms are discussed below.

For nonequilibrium transport, the assumption is made of a displaced
Maxwellian, with parabolic, spatially dependent energy bands:

E- f,2kk -F 2  + y22 + kz2 ) (1)
2m* 2m-*( +X k

Additionally, the following normalization,

2 2 k (2)n(rt) (2) 3  fd3k
r all k space

along with the definition, is invoked

nQ(r,t) (2~)r J Q(k,r)fd3k

where the position dependence in <Q> is symbolic through Q(k,r) and f.

The first moment equation is obtained for Q-1, and is the continuity equation:

an + Vrnv - 2 f j d3k (4)T- +Vrn (27)s 3 d-a
at coll

The right hand side in equation (4) represents carrier scattering. Note for d
displaced Maxwellian, <k> - kd. The second moment is obtained for Q- Ak.
Then:

t n fzkd + Vr (nA'kdkd)

-nVrEc + qnv x B - VrnkBT + nE(kd) + nkT r2 r +( (5) c klt :3k
rj rn r (2 w)J Ttcall
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where we have included the presence of a magnetic field. Gradients in Ec
reflect the position dependent conduction band, gradients in effective mass
reflect the position dependent effective mass. In the above equation,

E(kd) - 2kd'2m 
(6)

It is worthwhile noting, that by setting the left side of equation (5) to
zero, writing,

2 f a fJ Akd3 k - nhkd (7)
(21r) 3 -tcoll rm

and recognizing that current density:

J - qnhkd/m (8)

where

nkd - n[TmVr(Ec-kTlnN) -qrv x B] -mrmkTVrn (9)

we obtain current in the standard drift and diffusion formulation. A similar
expression exists for hole transport, and will not be written down. The next
moment is the energy moment and is obtained by considering, Q - h2k.k/2m

This yields

a[Ii 2kd'kd + kl+Vnv f" 2kd~kd + 4kTTtn + + Vr-V +
dt 2m 2 2m 2j

___ a 2k.kd~ (0
-nv VrEc + ( )3 coiJ d k (10)

In addition, to account for non-spherical contributions, a term proportional
to the gradient of electron velocity is added to the right hand side of the
above equation (5), and a term proportional to the gradient of electron
temperature is added to the right hand side of equation (10). These terms are: 0

+ 17 V2v (11)
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for momentum balance, and where v) is an assigned constant

- x grad T (12)

for energy balance, where x is an assigned constant

The carrier balance, momentum balance, and energy balance equations have been
implemented for nonuniform field situations for two species of carriers. For
uniform fields they have been implemented for five species of carriers. In
addition the moment balance equations have been restructured for nonparabolic
bands. The nonparabolic formulation is being prepared for publication. Some
details of these results are discussed in the sections to follow.

The moment equations for nonparabolic spherical energy bands, where:

nf~ E2(k) ft2  (13)

E(k) + Eg 2 (kx 2 + k 2 + kz2 ) - I(E) (
Eg9 2mI

take the following form:

For carrier balance, as before:

a + div vini - fani) (14)

where

Akd M3/2(15)

m 0M3/2

0

and

kMm - f exxk(x + X2)m( + 2-xn(1dx

00

which, in the limit of infinite band gap separation, i.e., a-c, reduces to
the gamma function r(k+l/2). Here a - Eg/kT
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For momentum balance:

N + div v i nihkdi - qniF - div nikTi + + nihki (17)

where the dyadic C is defined implicitly as

niy 4 5/2 7 /2 + 6 S/2 (18)
nikBTeCi 2M3/2 1VM- (Y+2 ) - k-(M 3  + rx )J

For energy balance:

a 49 kc 3/ h 1 r kd 3 1~S/f
Tni (L2 + k OMo2 + div ni 4 + k To--/JJ

- kdOF-div ni _ I + jo(i + j + k) + nkT
I qn m m I ( Coill

The above equations constitute the most general form of the moment balance
equations for nonparabolic bands.

The moment balance equations constitute the core of much of the work that was
undertaken during the tenure of this contract, and the results are discussed
within the context of reprints, which are included as part of this document.

Reprints 1 and 2 were among the first papers to address the problem of why
submicron devices do not show the apparent benefits of the uniform field
predictions of velocity overshoot. In examining these problems we modeled two
spatially nonuniform devices, one 0.5 um long, and a second 1.0 um long. We
demonstrate that overshoot, while present in these devices, provided only
marginal improvements because of slowly varying electric fields.

Reprint 3 addressed the continuing issue of the presence of ballistic
transport in devices, and introduced the concept of the thermal deBroglie
wavelength and its implications for submicron device physics.

Reprint 4 is a broad discussion of the consequences of the intracollisional
field effect.

In reprint 5, the uniform field momentum and energy balance equations are
solved in the small signal limit. The noise properties of devices under hot
electron conditions are examined by coupling the Langevin noise equation to
the small signal results. Numerical calculations were performed for silicon
and show the presence of significant contributions due to the intracollisional
field effect.

-7-
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In reprint 6 the extent of ballistic transport is discussed on the basis of
electron correlation. The conclusion of the study is that the time duration
over which the electron velocity rises in a ballistic manner is exceedingly
short, perhaps only 0.004 picoseconds, even though the mean free time is much
longer. The implication is that ballistic transport may occur only on a tens
of angstrom spatial scale. (It is worthwhile noting that recent resonant
tunneling discussions are even questioning this conclusion.)

Reprint 7 is another review paper on transport in submicron devices and was
presented at the first NRL Workshop on Molecular Electronics.

Reprint 8 is a comprehensive review of the state of numerical calculations in
1981, and incorporates a discussion of the drift and diffusion equations, the
moments of the Boltzmann transport equation, Monte Carlo methods, and an
introduction to quantum transport through the Wigner function. The study
assesses the physics of submicron transport, with particular emphasis on
vewlocity overshoot.

Reprint 9 contains a discussion of the role of boundary conditions to
transport in submicron devices, as well as calculations showing the dependence
of scattering on applied field. Again the issue of ballistic transport is
raised and shown that for applied fields of 50kv/cm, only about 35% of the
carriers are unscattered at a distance of 500 angstroms. The concept of
introducing a launching site to improve field effect transistor performance is
raised for the first time. It should be noted, that unlike most approaches
suggesting the presence of a ballistic launcher, this study suggests that the
launch site be design for moderate fields only. (Recent calculations in a 1987
Army contract support the notion that strong fields associated with abrupt
heterojunction launchers are inappropriate for high current levels; rather,
moderate fields are desired.) In addition, scaling, based upon the concepts
of Thornber, as applied to submicron devices is introduced in this paper.

Reprint 10. The role of the environment, in terms of coupled submicron
structures is discussed in this paper. In addition an array of submicron
devices in a lateral superlattice, and transport through a lateral
superlattice using Wigner functions and Monte Carlo techniques are introduced.

In reprint 11 the effects of boundary scattering in submicron structures are
investigated within the framework of balance equations arising from the
Boltzmann transport equation. Integrated equations are presented in which
surface dissipation can be inserted. It is shown that surface scattering
strongly perturbs and distorts the distribution function with corresponding
effects on transport processes.

Reprint 12 discusses the role of boundaries and interfaces on the electrical
characteristics of long (greater than 10 micron) and submicron scale -
semiconductor devices. Here the inadequacy of using current-voltage dc
measurements, in elucidating the role of the boundaries is discussed.
Additionally, the role of boundaries on the noise characteristics of
semiconductor devices is discussed. It is demonstrated that considerable
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information concerning the nature of the nonuniform field profiles in the
device can be obtained from noise measurements.

Reprint 13 includes an initial assessment of the role of experiment in
measuring velocity overshoot. A significant number of questions are
addressed, particularly with respect to Shanks experiments. The questions are
again raised in reprint 14 where a transient calculation through solutions to
the moments of the Boltzmann transport equation for nonuniform fields is
performed. It is demonstrated that displacement current effects may be of the
same order of magnitude as velocity overshoot effects, and that the time
scales for both are similar. The results tend to add further caution to
claims of measurements of velocity overshoot.

A detailed study of the role of field nonuniformities and boundaries was
reviewed and constitutes part of a long paper, enclosed as reprint 15.

The moments of the Boltzmann transport equation were applied to scaling
procedures. The focus of attention was the discussion of mobility versus
saturated drift velocity as the figure of merit for semiconductor devices. The
results of the study demonstrated that high mobility is the key factor in
submicron devices, whereas saturated drift velocity is the key figure of merit
in long near micron devices. This study is summarized in reprint 16.

In reprint 17 a study of InP transferred electron devices was performed with
particular emphasis on the role of boundaries.

A broad review of transport and concepts of transport in semiconductor devices
was presented at a NATO Summer School. This review is included as reprint 18.

More recent efforts are summarized below.

IV. SUMMARY OF RECENT RESEARCH RESULTS

HETEROSTRUCTURE TRANSPORT WITHIN THE FRAMEWORK OF A ONE DIMENSIONAL ANALYSIS

It is known that transport is governed by the properties of the boundaries,
and that uncertainties in fabrication processes lead to vagaries in the
electrical properties of these boundaries. One significant goal in the design
of micron and submicron devices is to remove the active region of the device
from such physical boundaries as the cathode (source) and anode (drain)
contacts and to replace the often uncontrollable influence of thse boundaries
by a controllable heterostructure interface. To initiate this study the
semiconductor drift and diffusion equations were solved in one dimenison for
the aluminum-gallium arsenide/gallium arsenide system. Transport in the study
was normal to the interface.

The structure chosen for the study was a five micron long element, with a
heavily doped n-type (N-l.0x1018/cm') AlCaAs region, 0.5 microns long,
followed downstream by a 4.5 micron GaAs region (N-5.0xl016 /cm). The
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electrical characteristics of this device were studied as a function of bias,
with the following results: The presence of the heavily doped AlGaAs resulted
in charge injection at the heterostructure interface, as also expected from a
heavily doped homojunction interface. The presence of the heterostructure
reults in a certain amount of carrier confinement, although it is not at all
clear that this confinement is significant with respect ot device operation.
At low values of bias the field downstream from the interface is uniform and
the current throughout the device is capable of achieving values associated
with the peak steady state values of the field dependent velocity
characteristics of gallium arsenide. For bias values high enough to send the
carriers into the region of negative differential mobility, there is a
preciptious drop in current, followed by current saturation. Accompanying
this drop in current is a one cycle propagating space charge layer that comes
to rest at the anode boundary. Further increases in bias results in the
movement of the leading edge of the space charge layer upstream toward the
heterostructure boundary. Note that the device essentially operates entirely
between two steady state values of current and voltage: a prethreshold high
current low voltage state, and a post threshold low current high voltage
state. The switching time for device operation is transit time limited.

Note that the type of behavior exhibited above also has been predicted by the
principal investigator using a simple cathode boundary field model in which
the cathode field achieves values significantly below the threshold field for
negative differential mobility. The result reported above may be the first
theoretical manifestation of the switching characteristics using a
heterostructure interface.

The above heterostructure study was expanded to include the presence of a
200nm graded heavily doped region. The results from the graded
heterostructure interface were qualitatively similar to that of the abrupt
interface. A dramatic change occurred when the doped graded region was
replaced by a lower doped (N+/N'/N) graded region. At this point Gunn
dipole layer transit time oscillation occurred. This result may represent the
first simulation of transit time oscillations in heterostructure devices.

The above results are of clear interest for the development of heterostructure
devices. And the design considered in the above paragraphs have been
incorporated into the vertical FET structure considered by workers at
Cornell. But an important word of caution is inserted here. Each of the
effects considered above involve two design features, the heterostructure
interface, and heavy or light doping of the spacer layer. Since heavy and
light doping of homojunction interface have produced qualitatively similar
results, the presence of the heterostructure for this device configuration may
be to provide greater control over the behavior of the device, rather than a
new operating principle.

Continued study of the role of the heterostructure interface within the
context of the above one dimensional framework is suggested. The following
tasks are recommended:

- 10 -
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1. The aluminum gallium arsenide/gallium arsenide interface should be mapped
out with respect to the governing boundary condition dependence of the
device electrical characteristics. Thus the doping levels of the AlGaAs
and the adjacent GaAs region are to be varied, as well as the length of
the graded region.

2. The effects of introducing an embedded p-layer on device operation should
be considered.

3. Other heterostructure combinations should be considered, such as the
InGaAs/GaAs system, and the InGaP/GaAs system.

4. The role of nonequilibrium transport through solutions to the moments of
the Boltzmann transport equatin and consequent velocity overshoot effect
is being studied and should be continued. Implementation of solutions to
the moment equations is a nontrivial matter. As discussed earlier
several features enter prominantly. First, the effective mass is
position dependent. Second, scattering rates are position dependent.
Third, the effective fields at the heterostructure interface require
generalization. In the case of the drift and diffusion equation
formulation, the effective fields were obtained solely from band gap
discontinuities associated with minima in the r valley portion of the
conduction band. In multiple valley transport, conduction band,
discontinuities associated with the L must also be considered. Recent
conversations with Professor Karl Hess of the University of Illinois
suggest that the band offset rule used for the r valley may find equal
application for the L valley. Fourth, present studies of heterostructure
transport using the drift and diffusion equations treat, e.g., the AlGaAs
region and the GaAs region separately. Connection between the two is
through the heterostructure fields, conductive and diffusive transport.
No mechanism is introduced for the effects of scattering from one
material to the second. Effects due to real space transfer should be
investigated. This involves introducing scattering rates from one
material to the second.

HETEROSTRUCTURE TRANSPORT WITHIN THE FRAMEWORK OF A TWO DIMENSIONAL ANALYSIS

Multi-terminal heterostructure devices such as, the HEMT, and superlattice
variations of the HEMT are being studied in a number of laboratories and
universities. HEMT studies performed at SRA involving solutions to the
semiconductor drift and diffusion equations were reported at the 1985
WOCSEMMAD. These results displayed an unusually high level of injection into
the semi-insulating GaAs. Accompanying this injection was a relatively high
current density and a broad two dimensional electron gas. The results did not
conform to the anticipated narrowly confined two dimensional space charge
layer and caused further investigation of the assumptions. For the most part,
HEMT analysis generally proceeds either analytically or through solution to
the drift and diffusion equations in which the Einstein relationship is used
for the carrier diffusivity. It is known that Einstein relationship is
inadequate for hot carrier transport and that modifications are needed. At
SRA, a field dependent diffusivity as obtained through solutions to the
moments of the Boltzmann transport equation is used in the analysis. The
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shape of the field dependent diffusivity has been corroborated by other
studies such as Monte Carlo. Additionally, there is experimental evidence
that the field dependent diffusivity bares little resemblance to the Einstein
relationship. Calculations with the Einstein relationship show relatively
narrow carrier confinement at the heterostructure interface as predicted by
others. Calculations with the hot carrier diffusivity show a reduced carrier
confinement. It must be noted that care is required in using field dependent
diffusivities at zero bias conditions.

The above discussion concerning carrier confinement arises from a few computed
bias points. But the variations in these results also emerged rom a
comparison of calculations with the heterostructure bipolar transistors and
the PBT. In all cases, there was a range of bias levels over which the
assumptions associated with the diffusivity played a critical role in
determining the physics of device operation and the electrical perfomrance of
the device.

At this point, there are several issues of interest. First, it is necessary
to map-out the effects of diffusion in determining the picture of device
operation. Insofar as diffusive effects appear explicitly in the drift and
diffusion equations, additional calcualtions within its context should be
performed. Second, the role of carrier confinement must be explored within
the framework of the Boltzmann transport equation where diffusive effects
arise primarily through gradients in the electron temperature. This study
should provide a good measure of the role of diffusion.

The effect of diffusivity and high field transport on HEKTs, HBTs, and PBTs
were presented in a paper given at the 1986 WOCSEMMAD:

The effects of Different Diffusivity Relationships on Transport in HEMTs,
HBTs, and PBTs. M. Meyyappan, J. P. Kreskovsky, and H. L. Grubin, 1986
WOCSEMMAD.

HIGH FIELD TRANSPORT WITHIN THE FRAMEWORK OF THE MOMENTS
OF THE BOLTZMANN TRANSPORT EQUATION AND MONTE CARLO

SRA has devoted a considerable amount of time and effort to the development of
transport codes that solve both the semiconductor drift and diffusion
equations and the moments of the Boltzmann transport equation. These
algorithms have the remarkable advantage of providing reliable, space charge
dependent transport device physics. Calculations were devoted to providing a
basic understanding of the role of boundary conditions and material parameters
on transport in GaAs one and two terminal devices. In particular, the first
realistic estimate of Gunn domain transient and upper frequency limits,
including space charge, were investigated. Frequencies in excess of 120GHz
are possible. Additionally, two dimensional FET calculations were performed.
The structure of the device is shown in figures 1 and 2, along with a plot of
the current voltage characteristic at the indicated voltage levels. These
calculations demonstrate the presence of overshoot. Also included in this
study was the effect of a substrate. The substrate was modelled by ignoring
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any scattering due to ionized or neutral impurities. As a result, the
presence of the subtrate has the effect of introducing an apparent increase in
total current because of a reduction in resistance. One of the interesting
results is the presence of negative conductance in the source drain
characteristics of a GaAs FET. Results obtained using the drift and diffusion
equations which is currently the methodology performed by other researchers in
the field, show no such negative conductance. The results are interesting
because studies at SRA on an Air Force PBT contract, using the drift and
diffusion equations, show considerable positive conductance in the source
drain characteristics. This positive conductance is absent from experiment
and suggests that when the MBTE is incorporated this positive conductance may
be absent from the PBT calculations.

NONPARABOLIC EFFECTS IN SUBMICRON HIGH FREQUENCY TRANSPORT

Under a companion study sponsored by ARO, the moments of the Boltzmann
transport equation were generalized to include nonparabolic contributions.
Studies under the ARO contract were confined to the binary compounds AlAs and
InAs, and the ternary compounds AlGaAs and InGaAs. The effects of nonpara-
bolic transport on GaAs were examined under the ONR study. There were several
highly significant results emerging from the GaAs study which have not
appeared in any other publication concerning transport in GaAs. We remark, at
the outset, that the standard low field mobility reductions associated with
nonparabolic effects were corroborated in this study. The new results are
summarized below.

1. Initially, the steady state calculations were performed for parabolic
bands. This formed a basis for comparison. Then the nonparabolic
effects were introduced. There were alterations in the scattering rates
and alterations in the way the velocity was related to the momentum.
Under the assumption that all coupling constants were the same for both
parabolic and nonparabolic bands, it was determined that the effect of
nonparabolicity was to delay the onset of electron transfer. The
consequence of this was to increase the values of the nonparabolic
electron velocity over the parabolic electron velocity, within the region
of negative differential mobility. Very similar consequences associated
with nonparabolicity were reported by Arden Sher at the DARPA Review. It
is to be emphasized that the coupling coefficients for the calculation
were based upon parabolic bands and the nonparabolic results at high
fields offer significant differences, the coupling coefficients require
alteration. The message here is that great caution must be exercised
before one can be convinced of agreement between transport theory and
experiment.

2. The next item of interest is the need to correct the insufficiency of
velocity overshoot as the significant physical measurement. This
insufficiency is not at all apparent when one is considering parabolic
bands. For nonparabolic bands, use of either Monte Carlo or moment I
equations is predicted on determining changes in the carrier momentum,
not the carrier velocity. Thus, all overshoot calculations involve
momentum overshoot, not velocity overshoot. This is a nontrivial

matter. For example, under uniform
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fields conditions, with the exception of the scattering rates, the time
rate of change of carrier density and momentum are the same for both
parabolic and nonparabolic bands. However, the time rate of change of
the electron temperature is different for nonparabolic bands and has the
effect of altering the time to relaxation. Further, for time dependent
transport, the observable is the current density rather than the momentum
density. The relaxation effects associated with momentum overshoot are
not linearly related to the relaxation effects associated with velocity
and, hence, current density. Thus, a more general criteria for upper
frequency limit of device operation is necessary.

3. It is anticipated that the moments of the Boltzmann transport equation
algorithm will require generalization for nonuniform fields and
nonparabolic bands.

QUANTUM TRANSPORT IN ULTRASUBMICRON DEVICES

In 1981 and 1982 the Principal Investigator published two papers concerning
quantum transport in ultrasubmicron devices. The formulation of the problem
was through solution to the moments of the Wigner-Boltzmann transport
equation. The moment equations included scattering rates, but did not include
the contributions of mixed states. Three equations were emphasized, the
carrier balance equation, the momentum balance equation, and the energy
equations are linearly independent, e.g., the carrier and momentum balanced
Schrodinger's equation. Recently, significant advances were made in the
quantum transport area.

1. Starting from the density matrix, the first three moments for an
canonical ensemble of electrons were rigorously obtained. In this
formulation, which incorporates mixed states implicitly, the potential
seen by the carriers is the full self-consistent potential appearing in
the one particle Schrodinger equation. The equations can be expressed in
a completely classical framework providing a direct link to the moments
of the Boltzmann transport equation. These equations can, however, be
separated into a part that is purely classical in form and a part
containing quantum contributions.

2. The moment equation formulation was re-expressed in three distinct
representations: the energy representation, the momentum representation,
and the coordinate representation. Each simplifies for specific forms of
the representation dependent density matrix. In particular, displaced
density matrices similar in form to the deplaced Maxwellian were examined.

3. The density matrix formulation was generalized to incorporate the effects
of dissipation. In this particular formulation, the question of how man'.
balance equations are required to obtain an approximate answer for
transport in ultrasubmicron devices was formulated. This latter
formulation will be the one of choice for examining quantum transport in
multiple quantum wells. These equations are discussed below.

- 14 -



QUANTUM TRANSPORT FORMULATION

For a single particle Hamiltonian that includes scattering:

H - f2+ V(x,t) + H(20)

the following three moment equations resulted:

carrier balance

an a j (21)
Tt+ - nv < (HSI P(0 ) >,

momentum balance

nmnv + Tv (nmv) - e 3---T x

h2  a2lnni i I'(22)
+ Z-- ZPij'i ax2  + h~ <(Efs~P('/>

and energy balance

i- X + m2nv2 ) + ax (V x+ mnV2)]

=2 e 09V(nmv) - 2 Lvflxx 2m aQ

tz 2 L2(23)
+ PI 3mvi I n ni + 82 mvij + A <LHs p2+
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where 0 is a stress tensor. The first two of the above equations were
formulated under the ONR study and has been programed for tunnel structures
under a new study.

Results of initial quantum transport formulations were presented at the
Arizonia State University Workshop on Quantum Transport.

Quantum Transport and Moment Equations in Quantum Wells Structures, H. L.
Grubin, 1985 ASU Workshop on Quantum Transport.

In addition to the above studies that have been published there are a number
of papers that are currently under preparation. In one paper, HEMT
calculations were performed, and the role of diffusivity on the results
explored. This paper has been submitted for publication. An extensive
discussion of the effects of nonparabolicity on the moment equations is near
completion. A study of the upper frequency limit for Gunn oscillations using
the moment equations and applied to InP was completed with additional support
from the Naval Research Laboratory. This study is being prepared for
publication. Additionally, hole transport is included in several algorithms.
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HOT CARRIER SPACE AND TIME DEPENDENT TRANSIENTS IN SHORT CHANNEL

GALLIUM ARSENIDE DEVICES Y'
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RLsunc - Nous cxaminons ici les ph~nomi~nes transitoires de transport dans
l'arseniure de gallium lorsque les champs varient dans le temps et l'espace
avec tine vitesse finie. Pour des variations temporelles et des champs uni-
formes ; a'n montre que le pic de survitesse est sensible au temps de mont.ie
do la polarisation. Pour des variations dans l'espace la vitesse moyenne des
portetirs eat extrigmement sensible aux gradients et quoique Von puisse obtenir
tine survitesse, celle-ci est plus faible que celle obtenie dana tin champ
uni forme.

Abstract - W~e examine transient carrier transport in gallium arsenide when the
fields change temporally and spatially at a finite rate. For temporal changes
and uniform fields the peak overshoot velocity is shown to be sensitive to bias
rise times. For spatial changes the mean carrier velocity is extremely sensitive
to gradients, and while overshoot can occur it is also below the peak uniform
field value.

Introduction - Among the earliest papers to deal with transient carrier transport

(TCT) and to include overshoot contributions were those of Butcher and Hearn 1and
2 3

Rees . These studies were followed by Ruch'a , whose significance was highlighted

by Frey and coworkers~ in a long series of papers. These calculations established

thast on short tine scales (of the order of an LO phonon intravalley scattering time

for GaAs) the me-in velocity of in ensemble of carriers could attain values of

velocity substar.:iallv greater than thecir steady state values. These results ha%--

si-.ce generated a great deal of scientific and technological interest. However.

while experiment.1' data 5,
6 

are consistent with the concept of velocity overshoot.

a~- -re diffici:,-'ies in dir- ,tly linking its effect to the operating pronertiez .f

ro :-empera t t r -t:% ievio . pa rt c u la r Iv FET- Although this absence of linkage i0

be nartlv due to linitat tons of resolution we think part of the problem lies in :.-e

u f :nished pic-.ur of TC-, A\ cte center of this is the fact that virtually ail

di-tissiorls de~-e ai,olatc overshoot vihenomena are uniform field calc-.latio:-

in1-i .!crrier- r-p. h. to i;elds tiat ,uddenl-. change from one value to inot,-.r.

rcresults; of - ii ire useful in providing tipper bounds for *.-?C DccL..

tro-uvt vol- !o o prov.'ide a rea list ic est imate of the rue

ont l i 'vv ic The theoret ical1 data for device des ign 1

;.-reav li icted. ' e. rvqil iro more. representat ive device/circuit sL-tula: ionim

0:i .ivi Reeireli
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account fot TCT and modifications arising from fields that rhange tempiorarily and

spatially at a finite rate. Some spatial studies have already appeared.
7
-
12 

but we

are shoirt of a consensus as to a phenomenology of transport within submicron devices.

The purpose of this paper is to isolate some of the details of TCT for gallium

arsenide when fields change at finite rates and to suggest the types of calculations

that would be useful for providing a viable phenocenology. The results should be

particularly relevant in the design of such devices as a subuicron field effect

transistor.

The vehicles for our discussion are solutions to the first three moments of the
13

Boltzmann transport equation (HITE), assuming a displaced Maxwellian distribution

Within this framework we attach no meaning to ballistic transport, since implicit

in our assumptions are strong electron-electron interactions. We examine two extreme

cases: (1) uniform fields, where all spatial derivativesapproach zero(2-- +O)and(2)

the steady state nonuniform fields, where all time derivatives are zero (I - 0).

For both cases the device simulated is part of a resistive circuit. The device, as

represented by HBTE, is in parallel with a geometric capacitance, both of which are

in series with a resistor and a dc source.

Uniform Field Temporal Transients - For uniform electric fields a host of calcula-

tions
3
,
4
,
14 

have been performed in which a typical electron with zero mean initial

velocity responds to an electric field of finite value. We interpret this calcula-

tion to mean that a collection of carriers in thermal equilibrium with the background

lattice is suddenly subjected to a field whose value increases from zero to a finite

value in zero time (or numerically in one tLe step). The results of this calcula- 0

tion are represented in Fig. la, where they are taken as having the significance of

an upper bound. The remaining curves which -.ere obtained for a bias turned on at a

finite rate show an expected reduction in peak velocity. The results at dF /dT =

4kv/cm/30ps (Fig. lb) are near those expecte-- fro= a calculation in which the steady

state field dependent velocity relation is used.

-- .: Uniform v(t) calculations with
r:ze ti-e. T i, as a paraneter. The

I Dias field is 21.5kv/cm. For (a)
.i~:.mfield is reached in on~e time

-I: *.For (b) rb=160 ps. c) Tb=16ps.S- v :)cm/sec. To=O.32ps.

_I
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The point of Figure I is an extrapolated one. A field changing at a finite rate
either temporally or spatially has a reduced overshoot contribution. If we artifi-

Cially introduce a spatial dependence through the relation d - vx3O ps. then for

v = 2 x 107 cm/sec. d - 6 microns. and a field increasing by 4kv/cm over this dis-

tance the velocity will not exhibit significant overshoot. Similar field changes

over a distance of 0.6 microns cause nonequilibrium effects to appear but the peak

velociLy shows only a 30Z increase, much below that of curve la. The results are

particularly relevant because these field and velocity changes are what we my expect

over a major fraction of a one micron gate length FET. More rapid field changes such

as that over a shorter gate region are likely to increase overshoot but here field

and carrier temperature gradients will make major contributions and in some cases

15virtually eliminate the effects of overshoot

Nonuniform Field Spatial Transients - From uniform field calculations we have become

accustomed to thinking in terms of velocity versus time for transient calculations.

In the absence of reactive circuit elements this scales current versus time which,

in principle, is experimentally accessible. For submicron devices in which spatial

contributions are significant, current no longer scales velocity. Velocity, while

now difficult to measure, is still useful for phenomenology. We discuss this within

the bounds of a one-dimensional calculation in which we calculate current versus
MFx) •w vith

time: j(t)=jn(xt) t) + t

jn(X't) - e(nc(xt)vc(x,t) + ns(xt)v (xt))

Through current continuity, j(t) is spatially independent.

One dimensional solutions to the Boltzmann transport equation have appeared in
7-11

the literature . What we emphasize is the micron scale space chage distribution

witnin steady state, although we also include the time evolution to steady state.

The - 0 solutions represent the kind of inform-tion we need for FET and uther

dev%:e modeling.

F:. .. .i t i form 'ield *urent

Ibwrn1
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In examining spatial transients we become aware of significant differences from @
that of the uniform field calculations. In the uniform field calculations it i, thie

field driven steady state electron temperature that determines the distribution of

carriers in the central and satellite valley. For nonuniform fields where they are C

strong gradients in space charge, field, etc., these significantly modify the uniform

field electron temperature dependence. Two distinct sets of computations illustrate

the above idea. in these calculations, two elements were chosen, each with a doping
17 3

level of 10 /cm . One element was 1*micron long, the second, 0.S microns. For

each, a doping depression of 0.9 x 10
17

/cm
3 
was introduced. For the I micron element

it began at 0.1 microns downstream from the source and continued another 0.2 microns.

For the 0.5 micron element the beginning was at 0.05 microns and continued for 0.1

microns. Each nonlinear element was in series with a resistor and a dc source. The

magnitude of the dc source was chosen so that, should the fields be uniform, the

average field across each would be equal in value. Figure 2 shows current versus

time for the elements. These profiles show a remarkable similarity to the uniform

velocity-time profiles, tending to camouflage a rich space charge distribution. The

calculations for both cases displayed velocity overshoot during the initial transient;

only part of which can be attributed to the temporal contributions. In steady state,

the shorter element exhibited no spatial overshoot while the longer element did.

The differences in these results are attributed to quantitative differences in

the space charge distribution as illustrated in Figures 3 and 4. By comparison, the

shorter element has steeper gradients in carrier density, higher fields, carrier

temperature and enhanced transfer across the notched region. The mean velocity (not

shown) is near saturation even though the field across the notch is not high enough

for saturation, as determined by the uniform field calculations. The question of

negative differential mobility therefore arises and we examined it by extracting

contributions from the derivative of electron pressure, a term which tends to behave

as a diffusion current, from the total current. The remaining :erm is formally. the

familiar conduction current (some contributions re'.ain from derivatives of the rean

kinetic energ:,) and so should indica:e the presence or absence of ND-. With the

exception of extrema, NDM is marginal. Across the right hand :art of the elemen:

where the field changes more gradua-',v, there were traces of - bu- it was nct

clear to wna: e.:yent this result nas r.del dependent. For cory:arise:" we refer :-, an

earlier uni.= field study w here we concluded th-- transfer z:.ess - 0.1 micrct

regio;i would n::- likely yield

For ti. "::er element we dis-a' the mean c.rrier veloct:> v(:..:) = in(X':)

on(x.t) . '.. :a more gener' :-p-ssion than z e uniform f:-!d ycocit\ ,:::

, implieitly . F,, :..is eleMenit t_'i:t-bv-poi..: corr, pondn,:,

b,'t ,',' ',' x,: i : F(N,L) disp..i' -: _.tial overs ,,z. lloveve7., chei, exi;ce ; %.'2*:es

, ,: de si ':: -.: ,',,ntri"ut i:e rorn grad: :- ( ao,. Is., i... .

nc,,. 1: - .,o di;u-; er:.-r veI,, 1tv :r'z:sit t : 7..ii tit- i'. e: ._ '
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Fig. 3: Spatial distributions (a)
conduction velocity, (b) internal

.'ILA___________oil,__ field, (c) mobile carrier density
-- ~ -'*,-(d) background density. (inset)
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steady state (as) conduction plus diffusion relation v - v th 4. len near a

depression in n, v should be greater than vs..

Conclusion - WEhat are these results teaching. On one level we can interpret numerical

results, as above. On a second level we can infer %ome general patterns. Here, itf

we go back to the late sixties and the interpretations of transferred electron devzire

behavior, we recall the conclusion that significant. locally confined. spatial non-

uniformities control device behavior. The above results are consistent with these

earlier NDE studies 17. For here, the shorter element sustained a larger field

gradient near one of the boundaries, enhanced electron transfer, saturation in

carrier velocity, and a low net current, while in the longer element the field near

one of the boundaries is lower, there is a more equitable sharing of potential

between the resistor and the nonlinear element and the current is higher. (In sub-

micron devices we may expect some space charge propagation. For the longer element

discussed here there was still some residual time dependence but it was not examined.)

The results also teach that the achievement of high speeds in pcac~ical devices will

necessarily require the incorporation of spatial transients into device modeling.
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ABSTRACT Device modeling on time scales of the order of
fractions of picoseconds has been extensive. With

The purpose of this paper is to demonstrate the exception of a few, most studies have been
that peak overshoot effects in gallium arsenide are concerned with the limiting situation in which the
reduced when the fields change temporally and carriers respond to sudden changes in electric field.
spatially at a finite rate. For temporal changes These limiting situations have provided us with
and uniform fields the peak overshoot velocity is peak momentum-relaxation-time dominated velocities,
shown to be sensitive to bias rise times. For far in excess of their steady state values. There
spatial changes the mean carrier velocity is are conceptual difficulties in relating these
extremely sensitive to gradients, and while over- limiting values of velocity to the operation of
shoot can occur it is also below the peak uniform present day devices. Indeed, there may not be a
field value. pressing need to do so. What appears necessary at

this point is the development of a collection of S
I. INTRODUCTION results that illustrates the effects of relaxing

the sudden field concept. We have begun such a
The high technological interest in submicron collection. And when we combine our recent results

length devices stems from our increased ability to with results of others, we are drawn to the con-
store and process more information on a chip of a clusion that overshoot velocities are dramatically
given size. But the shrinking device introduces a reduced when the field, as seen by the electrons,
host of new and exciting problems, the most direct changes at a finite rate. This paper is a summary
one - how does a submicron device work? While on of these results.
an ultra-small scale device-device interactions are
likely to lead to synergistic behavior, where the II. FORMULATION
whole behaves differently than its parts, most sub-
micron device modeling is concerned with the con- Our results are obtained numerically for a two
stituent part - the discrete device. valley GaAs I '2) element through self consistent so-

lution to the first three moments of the Boltzmann
For the discrete submicron device there are Transport Equation (BTE), which we write in the

several critical parameters, some of which are form first discussed by Blotekjar(2 ):
listed below. The point of the scales is that when-
ever the extrinsic and bulk parameters overlap, Carrier Density (i = 1,2)
the usual drift and diffusion modeling equations aNN
are called into question. Whenever the concept; _ + V (v.N i)
e.g., of a wavepacket or Fermi's Golden Rule is a| at

questioned, the Boltzmann transport equation is Momentum Density P. M--N-v
scrutinized. M u s + (i i

TABLE 1. Approximate spatial scales (GaAs) a- + V'-I i  =  e F - V(NikTi) + a* I c

Term Value i
5 4 Energy Density W i : NikTi + 2Niv

Active region length 10 cm, 10 l m awi
Impurity separation (N;1/ 3) 10-5cm I 101 /cm3  -- + V'v.W)

10-
6 cm @ 1018/cm

3  dt
Mean free path 10-5 cm - eNiviF -V. (viN,kT i ) - V-i + (-w-/
Thermal deBroglie wavelength 2.6x10-6 cm a (

TABLE 2. Approximate temporal scales (GaAs) The bracketed terms on the RHS of the above equations

Term Value represent scattering integrals. And each of the

Transit time(for v5xO
7/cm/s) xl0 s @ L.lO-Scm above are solved simultaneously with Poissons equa-

sxlO 2s @ L=10 4  tion and the circuit equation. In solving these
xlO 1cs @ L1O-cm equations we have found a convenient set of normal- 0

Collsntu raation 3xlO s @ 300K izing parameters. They appear in Table 3.Collision duration 2x10-14s

27.4

(HI708-7 81,'00()-0633 SO).75 C 1981 IEEE |wNI 81 - 633



TABLE 3. Normalization Time/ ia

t Tot' To - scattering time N .x - Vo0To0x',  vo 0 (2ko0TlW 0) 1/2 0.8 .

P PPE T - ambient temperature - 10 l/m

Pi 1 1O 0 00
v i Pi /Mi Po . - %v.o Po 

= 
No.Po > o

ni .N n a - c.v. effective mass >0 0
T= T Ta N - background doping %~)

0.0'

w = N k T w' F- m v leV
1 00 0 i o 0 00 >

F = F' so = koN v
2
T

0 0 0 00 0

0
M. = M I,.

1 , 0 __ _ __ _

~ .. D0 300 600
at m. pi DrSI Time/i

Dt i /c Fig. 1: Uniform v(t) calculations with bias rise
atime, Tb, as a parameter. The maximum bias field

D1 n'p =- -grad'nT +__ is 21.5kv/cm. For (a) the maximum field is reached
Dt.'i i -2- ait c in one time step. For (b) Tb=l6O ps. v0'.3.7x10

7

D . = -2''F- VL nTj + -V2T'Gi) cm/sec. T,-0.32ps.
D,' i  m. ' /c The above results are consistent with the

1t unnoticed overshoot calculations of Ref. 6, where

the GaAs element responded to a driving ac signal.
The advantage we find for the above is that the We present a slight variant of that result in figure

relative contribution of each term is readily acces- 3 , where we show the results of a self-excited
sible. The one problem offering something of a relaxation oscillation. The details of the self-
dilemma in the above is the contribution of the excited oscillation have been chartered by many
thermal conductivity. This term has been regarded authors (7). It suffices to state that the circuit
by Blotekjar as a highly significant non- now contains an inductor, and when the oscillation
Maxwellian contribution. As with others (3) we have occurs the current-voltage pattern is that of a
found this a welcome help in assuring stability of Lissajous figure. When the semiconductor drift
some numerical calculations. The problem is what to and diffusion equation are used the velocity versus
choose for a value for K, aside from the fact that field relation exhibits no hysteresis. When the
we have taken it to be constant. We can get some BTE is used to compute the velocity, hysteresis and
help from the Wiedmann-Franz Law 4= .cTkZe 2 . Thus overshoot occur, as shown below. But as seen the
K' - <>lto and we expect the normalized thermal overshoot is substantially below the peak of that
conductivity to be less than unity. However, in the of figure 1.
calculations discussed below we have virtually
ignored it. Its effect will be examined later. .75

Ill. UNIFORI FIELD TRNSIENrS N = 50 3
u

The first set of calculations are for uniform
fields. In this case the nonlinear element was in .50
series with an inductor, a resistor and a dc source.
A geometrical capacitance was placed across the >
device. For the case where the inductor was absent
we computed the response of the nonlinear element -

to an external source that reached a maximun value
as a controlled rate. Two extreme cases are

shown in figure 1. Curve 'a'of figure 1 yields the
familiar "high" velocit:, overshoot results(4,5),
and here the bias reached its peak value in one
time step. For curve 'b' :he maximum bias was | I
reached after a time of 160 ps had elapsed. There 0 2 6 8
is a dramatic reduction in peak velocity. This
result is not at all surprising when we recall that Field/F
overshoot is primarilY a consequence of differences I
in the energy and momentum relaxation times. If the Fig. 2: Velocity versus field for an 80 GHz relax-

device voltage changes on a time scale comparable to ation oscillation.
the energy relaxation tire, overshoot effects are

considerably reduced.
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The question to ask is what can we expect at
higher frequencies where the field changes more 1. - 0.5 MICRONS
rapidly. A direct answer Is somewhat difficult of 2.0 0.35
this moment. We note that it takes the electrons
a finite period of time to respond to any changes 6) (h)
in electric field. During the time the carriers
sense a high field, the latter may already have c
turned around. 

Further complications 
arise in that 

I 1 0 NIRN

the way the field changes is constrained by the I.h 0.25
external circuit. In any case, preliminary studies
show that increasing the rate of change of field
in an oscillating circuit does not automatically
result in a higher overshoot.

IV. NONUNIFORM SPATIAL TRANSIENTS 1.2 0:.5
0 0.25 0.5_0

When spatial nonuniformities are present in DISTANCE (MICRONS)
the semiconductor the interpretation of nonequlib- (c) )
tiu contributions becomes more complex. Essen- 1.00 - - -

tially what is needed here is a cataloguing of
results of model calculations. Some, have already a a
appeared (8). Below we discuss spatial transients in I

devices for which all temporal transients approach
zero (i.e., at 0). This is the opposite extreme -

to the temporal transients where all spatial 0.96

gradients are zero.

The configuration we have chosen will be ,
familiar to those involved in Gunn devices during
the sixties. We assume a jellium distribution of o , -
donors with a density of 10

17
/cm

3 
and a 10% "notch" 0.92 , I

downstream from the cathode. The jellium distribu- Fig. 3: Spatial distributions (a) conduction vel-
tion must be viewed suspiciously for ultra-small ocity, (b) internal field, (c) mobile carrier den-
devices (see Table 1). The lengths of the elements sity, (d) background density.
are 0.5 and 1.0 pm, with notched widths of 0.1 and
0.2 microns, situated, respectively. 0.05 and 0.1 41
um downstream from the cathode. Each nonlinear L - 1 MICRON
element was in series with a resistor, and a dc .58•
source whose magnitude was chosen so chat should .58
the fields be uniform the average field across each /(a)
element would be the same. The initial transient I F (b) /
was virtually indistinguishable from the uniform I
field case. The long time, -L-. 0, limit showed 2-3 .t r : ; , \/q'

significant structure reminiscent of "cathode i 54
notched" supercritical amplifiers. 9 The results 3 / A

are shown in figures 3 and 4, where we display the I
magnitude of the field and the net mobile carrier
density. For the longer element we display the 'I
mean carrier velocity v(x,t) which is more general 0 1
than the uniform field velocity and implicitly in- 0 0.5 1.0
cludes diffusion. For the 0.5 micron element we DISTANCE (MICRONS)
display the conductive velocity which is obtained _._,

by subtracting the term containing -I (nT) from
v(x,t). The conductive velocity te~ids-Lo isolate
negative differential mobility (NDX) effects,
if any.

To examine these resiulrs we als: display some (c)
supplementary calculations. Figures 5a and b dis- 1.0
play central valley (CV) results f:.r 0.5 and 1.0 f

micron devices. Figure 6 shows resu':s for a
uniform field calcuX.1-ion where t-c 5'ias field rose
at a slow rate. From figures 3-5 ,.. can extract I r
Nc versus F and coapare them to the uniform field
value results. With the exception of the immediate
region of the notch the results are somewhat 0 -9-__

similar. For the short element, the fields near
the notch are high and cathode electrons are pre- Fi. 4: Spatial distributions: (a) mean carrier
dominantlv in the satellite valleo. As a result, vocity, (b) internal field. -c) mobile-carrier 0

density.
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apart from a marginal NON region near the cathode (.) (6)
there are no overshoot contributions. The longer .0
element displays more interest. Here the cathode '#
fields are low enough to allow a significant frac-
tion of carriers to remain the CV. Initially the
CV momentum and temperature correspond closely to ,.

the uniform field case. Decreasing, and then in-
creasing fields (towards the anode) result In cor-
responding changes in energy and momentum. But
these spatial changes do not completely follow the
field, there is some spatial relaxation. Thus, 0.2
while reductions in field near the cathode produce 0 II) o
lower values of electron temperature, they are not
as low as the uniform field results suggest. In-
creases in field are followed by increases in
temperature, but not as great as that suggested 2 1.25
by the uniform field analysis. As a result, the
electrons are cooler than in uniform field equilib-
rium and overshoot occurs. We have also examined E
a similar set of supplementary calculations for the
satellite valley. Because of the significantly C

higher scattering rates the results are similar to s

those obtained using the steady state uniform field 2

values of velocity. 0 1 0

V. CONCLUSIONS 0 I0 0

The basic conclusion of this study was stated
in our introductory remarks. Reiterating, non-
equilibrium overshoot effects are present in 4 T' T'
submicron devices. They occur because of spatial
and temporal variations within the device, coupled
to strong differences in energy and momentum
relaxation times. However, to extract the maximum
speed from these devices new and very careful
designs will be necessary.

E
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The study of high field transport in semiconductor devices has progressed very rapidly over the
past decade, sustained in part by rapid technological advances in the solid state electronics
industry. These have, however, generated important conceptual problems in modeling of high
speed transport in nonlinear semiconductors. Some of these problems are discussed below.

PACS numbers: 72.20.Ht

I. INTRODUCTION a density of 1015/cm 3 contains 100 thermally generated car-
riers. At 1018/cm 3 this amount increases to 105 carriers. We

The study of high field transport in semiconductor devices are apparently constrained to regard some submicron devices
has progressed very rapidly over the past decade, inspired as injected devices.
directl) by Gunn's observations of high field propagating Another matter related to impurity atoms is their distri-
domains,1l and sustained by rapid technological advances in bution. Typical device simulations of micron and longer de-
the semiconductor industry. Accompanying this growth are vices usually assume a continuous (jellium) distribution of
dramatic changes in the way transport properties are de- impurities with spatial variations occurring on a macroscopic
scribed. For example, most textbooks written prior to 1965 scale. As the nominal device dimensions are reduced to a
(see e.g., Smith, Ref. 2) solve the Boltzmann transport equation submicron scale this becomes less realistic and statistics asso-
using the relaxation time approximation and perturbation ciated with impurity placement (e.g., clustering) are re-
theory; nonlinear transport is treated either phenomenolog- quired.
ically or descriptively. Among the earliest general treatments The fourth entry in Table I is the thermal deBroglie
of nonlinear transport, per se, are those of Conwel 3 and wavelength, a useful parameter for a large collection of
Paige.' Present treatments of device transp~ort tend to combine charged particles. The implication is that if the critical device
the results of, e.g, Refs. 2-4 with the techniques of numerical dimensions are comparable to the deBroglie wavelength,
simulation enabling a more complete representation of device carrier reflection effects occur, which may enhance the
phenomena (see, for example, Ref. 5). The types of problems probability of scattering. Quantum effects have already been
currently studied stem from the technology associated with identified in submicron MOS structure s Figure 1 displays
the very large scale integration (VLSI) and very high speed thermal deBroglie wavelength vs effective mass. On a sub-
integrated circuits (VHSIG) programs. These programs in- micron scale quantum effects should be most prominent in
troduce conceptual problems in modeling the device physics, the light mass semiconductors.
problems generally ignored in long devices operated at the Table !1 identifies the more significant temporal scales. 0
low gigahertz frequency scale. Some of these problems are Prominent here is the transit time, which is 0.5 ps for a carrier
discussed below. traveling at 2 X 101 cm/s across a 0.1 pm region. This value

II. SPATIAL AND TEMPORAL SCALES is of the order of the mean time between collisions and rep-
resents a major difference between submicron and the longer

Tables I and II identify important VLSI/VHSIC scales. multimicron length devices. For the latter, collisions are a
Present and near term device designs are concentrating in the small fraction of the characteristic time interval, and the -
0.1-1 p regime. The lower bound is typically the order of a

carrier mean free path in such compound semiconductors as
gallium arsenide, and is approximately equal to No" 3 when TABLE . Approximate spatial scales (GaAs).
No. the mean impurity concentration, is equal to 10S/cm. Term Value
For No l0 8 /cm 3 the separation is approximately 0.01 u. Vau
In the former case the possibility of collisionless "ballistic" Active region length 10-$ cm, 10-' cm
transport arises, a topic discussed below. The latter case Impurity separation (NO'

11) 10-'cm @ 10/cm3

implies that the concept of a semiconductor device with 10-' cm * 10'/cm'

thermal generated majority carriers is meaningful only at high Mean free path 10- cm

concentration. For example, a 0.1 X I ) 1 pm element with Thermal deBroglie wavelength 2.6 X 10- 6cm

540 J. Vac. Scl. Technol.. 19(3), St./Oct. 19S1 0022-53558l11030S40-OSS01.00 () 1981 American Vacum Society 540
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TAULE It. Apronimatc temporal scal (GaAs). the transient behavior of light mass submicron devices are
dominated by properties of the surface, as well as the envi-Term Value ronment. While this is clear from several examples (layered

Transt lime (forv - 2x 107cm/s) 5X 10-'3 s L 10-1 cm real space transfer devices quantized inversions layers.6etc.),
SX 10-1 s C L - 10-'cm the study of these surface dominated submicron devices is still

Momentum relaxation 3 x 10-11 s 6 300 K a new discipline, with its concomitant uncertainties. We il-
Collision duration 2 X 10 -" s lustrate the latter below.

concept of mobility emerges. For submicron devices where Ill. BALLISTIC TRANSPORT: TRANSIENT
subpicosecond effects are important mobility is not a signif- CARRIER TRANSPORT
icant parameter. Without overstating the case, submicron
device transport requires solutions to the Boltzmann and The possibility of fabricating devices with an active channel
quantum transport equations rather than the drift and dif- length of the order of a mean free path has led to the proposal
fusion equations. that ballistic devices are conceptually possible.' 0 We explore

From an intuitive point of view. there is little distinction this briefly, emphasizing the dependence on boundary con-
between the mean free path and the time between collisions, ditions.
ie., there is overlap between the temporal and spatial scales. Ballistic transport as used in vacuum tubes implies the ab-
The third entry in Table II offers no such parity. This entry sence of collisions, except perhaps for Coulombic interactions
represents the fact that collision processes take place over a and their resulting space charge limitation. In a semiconductor
time interval that may be a sizable fraction of the carrier re- such as GaAs, it has been suggested that microscopic ballistic
sponse time. Thus during a collision event the carriers may, transport is also possible so long as the carrier energy is below
additionally, either absorb or lose energy to a self-consistent the optical phonon energy, approximately 36 meV for GaAs.
field. Treatment of this effect requires modification of the This, however, ignores such things as carrier statistics. For,
scattering integrals of the Boltzmann transport equation.7  in an otherwise perfect crystal (ignoring the weak acoustic
Results will be illustrated below. phonons), the mobile electrons have a well defined energy

Implicit in the above discussion is that as devices are re- distribution with some carrier energies very near the threshold
duced to the order of a mean free path or smaller, their be- for phonon emission. As a result, even for small applied fields
havior becomes boundary condition intensive. No longer is electron-phonon interactions will occur, and ballistic transport
it reasonable to conceive that transport is determined by, e.g., in the microscopic sense is not an observable. Instead ballistic
band structure, and, e.g., then modified by contacts.8 Rather, transport in the sense of the mean is conceptually possible,
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where aS a short time wcale the mean velocity is approxl- 6.0
mately given by

(V) = qFt/mO. (1) el Ce ntal

Equation (1) implies an ensemble average in which elec- 3.0-vle

tron-ehectron interactions are sufficiently rapid for the carriers
to be in thermal equilibrium with each other. Further, for .2.0-
GaAs. YT' in Eq. (1) is generally less than the relaxation time vlefor the Frohlich interaction, i.e., t <<0.3 ps. f Net velocity

if we accept the conceptual possibility of mean ballistic -
tranhport then a number of simple results are immediate and 1.
are borrowed from the literature of vacuum tubes. In one cawe
(neglecting diffusionl) current continuity, energy contserva- 0.6.
tion, and the assumption of an infinite source of cathode
electrons entering with zero velocity yields Childs law: 0

Relaxing the unlikely zero cathode velocity condition$ causes
the current voltage characteristic to depart significantly from0.
a -3/2- power law,'" and reinforces the idea that for mean t .

ballistic transport,. the I-V characteristics are dominated by SaelV
the boundary region, not by ballistics.' 2 Saelt

When we examine transport on a time scale longer than that W 0.1 valley
for which Eq. (1) is approximately valid, dramatic nonequi-

288

GaAs

No -10 17  Field (ky/cm)

A3000 K Fic. 2. Steady state velocities for the
F 27 V/cm central and stellite valleys of CaAs in

a .x orientation. Also shown~ is th
mean velocity including electron

transfer.

rc -0

C!S

> ~Fic. 3. Mean transient carrier ve-
locity vs time for zero and finite Col.
lision duration. Results are obtained

Tc -0.1 TO from the first three moments of the
Boltzmann transport equation.
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phonon intervalley scattering becomes the dominant scat-
8- tering mechanium, and there is an increased level of sponta-

neous phonon emission. For the central valley, velocity satu-
L"'O. 121.0. ration occurs but at values of velocity higher than the steady

state velocity. The general situation is represented by steady
L state curves (Fig, 2) for the mean carrier velocity in the central

and satellite valleys. Due to differences in the effective mass.
4. U the carrier velocity is highest for central valley electrons.

,Once we recognize that a finite amount of time is necessary

" for carriers to transfer from the central to satellite valleys we
see the immediate possibilities of high transient velocities.
Typical transient curves are shown in Fig. 3: one result is for

L zero collision duration and a second for finite collision dura-
tion. The shaded region, where the expired time is less than
LO phonon relaxation time. we refer to as the mean ballistic
regime.

The calculation of Fig. 3 can be translated into a velocity
0.42 vs distance transient. Then repeating the calculation at dif-

1 0 20 ferent values of field we obtain the results of Fig. 4.13 It is clear
Field (kv/cm) that as the device dimensions are reduced the apparent sat-

FIG. 4. Field dependent drift velocity vs distance for gallium arsenide. urated drift velocity increases while the presence of negative
Lengths denote transit-distances, differential mobility is eliminated. This particular result is

highly significant insofar as it suggests the possibility of en- S
ginering a size dependent device which in one case offers

librium size-dependent effects occur. The phenomena has negative differential mobility, while in another case velocity
been referred to as velocity overshoot for reasons that will be saturation.
apparent. We again concentrate on gallium arsenide, which
for simplicity we treat as a two-valley semiconductor.

At low values of electric field and at room temperature IV. SUMMARY
almost all of the carriers are in the central valley. In the ab-
sence of ionized impurities, detailed balance dominates and The above discussion developed from the idea that con-
the mobility, a "mean" quantity, is determined by intravalley ceptual problems in modeling device transport on a submicron
LO phonon scattering. At high values of electric field LO scale require care for their resolution. And in emphasizing the

Anode "

Cathode

FIG 5 Representation of a three-dimer-
sional submicron device. dominated b% one Poss ib 1 e Dominating
section of the contact Cathode "Patch" Region

HIM]

S.mict,nductor Transport
Region
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Hot-Carrier Constraints on Transient Transport in
Very Small Semiconductor Devices

DAVID K. FERRY, SENIOR MEMBER, IEEE, JOHN R. BARKER. ANr) HAROLD L. GRUBIN, MEMBER, IEEE

Abstract-Current technology has progressed rapidly and is pushing transport on scales intermediate to the true atomic scale
toward fabrication of submicron dimensioned devices. As this occurs, (<10 A) and the bulk solid-state macroscale(>l pim = I0 A).
we expect that the temporal and spatial scales in these devices will It is already apparent that simple down.scaling of processing,
become sufficiently small that the semiclassical approach to transport
theory, as expressed by the Boltzmann equation, becomes of question- device function and performance, bulk physics, etc., is not

able validity. In developing a corrected transport equation from quan- adequate in this region, nor indeed is a straightforward up-
turn kinetic theory, several constraints arise on the normal concepts of scaling of known atomic-scale phenomena 171, 181. Indeed,
transport parameters. The intra-colisional field effect, concomitant whether the transport is ballistic (9] or retarded (101, [III , it
nonzero collision duration, and retatded collisional interactions have is complicated by the high electric fields and the resultant hot-
pronounced effects upon the carrier transport, especially in the transient
dynamic response region in small devices. The description of diffusion carrier phenomena. For example, 1 V across a 0. 1-pm channel

is also complicated by the relatively long duration of the velocity auto- produces an average electric field of 10' V/cm, enough to pro-
correlation function. Calculations have been carried out for thevelocity duce hot electron effects in any semiconductor.
autocomelation function for Si. It is found that the autocorelation Hot electron effects were suggested as early as 1963 to be
o'(r) initially relaxes exponentially, due to momentum relaxation, goes important in MOSFET's 1121 and the role of velocity satura-
negative and displays a local minimum, then relaxes to zero at a slower
rate due to energy relaxation. This complicated behavior leads to tion was considered shortly thereafter [13). Subsequently,

enhanced diffusion and noise on the short-time scale. the role of hot carriers in MOS and MES devices has been

investigated and reviewed 14]-[20]. Much of the problems

that arise in transport in submicron devices are due to the very

I. INTRODUCTION fast time scales inherent in these small devices. For example,

T HE THRUST OF integrated electronics in recent years an electron traveling at 107 cm/s can cross a 0.1-pim channel

has been toward the realm of VLSI of IC's. From the in 10
-
12 s, which is a time on the scale of the appropriate

early beginning of IC's. the complexity of the circuit increased relaxation times for momentum, energy, and charge. On this

rapidly, approximately doubling each year (i]. In fact, the time scale, the electrons encountering a high-field region of

growth of complexity appears to be maintaining this rate for this dimension, such as the pinchoff region in a MOSFET, do

regular arrays of devices, although slowing somewhat for ran- not have adequate time to establish any sort of equilibrium

dom logic [2]. There are several factors to this increase in distribution, a point made rather pointedly earlier by Ruch

complexity, including major effects arising from increased die [211, and by Maloney and Frey [221. Additional complica-

size, increased circuit cleverness, and reduced device size. The tions arise from the fact that the collision duration is no longer

latter of these is significant, and current IC's involve devices negligible on this time scale and strongly affects the transport

of I-pm design rules 131. However, research MOSFET's have dynamics [10], [23].

been fabricated with channel lengths in the 0.1-0.25-pim range In modeling of semiconductor devices, the major physical

[41, [S]. These developments are not restricted to MOSFET's, effects are dominantly tied up on the manner in which the
and experimental GaAs microwave devices have also been built charge fluctuations and current response are coupled to the

with gate lengths in this range. Indeed, simple experimental local electric field, formally related through the continuity

structures have been fabricated in the 0.01-0.1-pm range [6]. equation. To accurately determine the current response, one

These new developments and advancements into submicron must solve an appropriate transport equation and it is in these

semiconductor devices are considerably hampered by a large transport equations that many of the major modifications

gap in our understanding of nonequilibrium semiconductor arising from these short-time scales occur.

In the following sections, we examine the consequences of

Manuscript receivcd October 27. 1980; revised Aprd I, 1981. This changes that the short-time scales play on the transport of
work w s supported in part by the Office of Naval Research. the Army carriers in these small devices. First, we look at the effect of'
Research Oflice. the North Atlantic Treaty Organization. and by the the nonnegligible collision duration and the concommitant
Science Research Council (U K.).

D. K. I-erry is with the 'lurado State University. Ft. Collins. CO intra-collisional ield effect. Then we turn to its effect on the
80523. transport equations. especially with regard to transient dy-
J. R. Barker is wbith Warwick University, Coventry C%'4 7AL. England. namic response. In this latter regard, the concept of diffusion 0
I. L. Grubin was with United Technologies Research Center. Fast

Hartford. CT 06108. lie is now with Scientific Research Associates. and the velocity autocorrelation function must be carefully
Inc.. Glastonbury. CT 06033. examined. Throughout we concentrate on silicon devices.
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I!. THE INTRA-COLLISIONAL FIELD EFFECT (ICFE)

The Boltzmann transport equation (BTE) has long been the
basis for semiclassical transport studies in semiconductors and io
other materials. Its utility also stems from the fact that it is
readily transformable into a path-variable form which can be - ".
adapted to numerical solutions for complicated energy- -

dependent scattering processes 1241, 1251. In this form, the

BTE is often referred to as the Chambers-Rees path integral '0
equation, and serves as the basis for Monte Carlo and iterative se
calculations of transport. However, the BTE is valid only in I ooV

the weak coupling limit under the assumptions that the elec- to " _

tric field is weak and slowly varying at most, the collisions are
independent, and the collisions occur instantaneously in space to "
and time. Each of these approximations can be expected to o 1o too

be violated in future submicron dimensioned semiconductor Field (Wev.)

devices. We have previously shown that in such devices, the Fig. 1. Variation of the effective collision duration (dashed curve) and
mean freetime for Si (solid curve). The latter quantity is calculated

time scales are such that collision durations are no longer from the effective mobility as f m e.

negligible when compared to the relevant time scale upon
which transport through the device occurs [231. In this situa-
tion, even for time-independent fields, the quantum kinetic the total energy-conserving 6-function is broadened by the
equations are nonlocal in time and momentum. It may be presence of the electric field. Second, the threshold energy
recalled that the BTE can be rigorously derived from the den- required for the emission of an optical phnon is modified,
sity matrix Liouville equation formulation of quantum trans- which causes a shift (in energy) of the 6-function. This latter
port [261, 1271 under the above amplifying conditions. In process is easily understood in physical terms. The argument
this approach, the collision terms are derived under the assump- of the energy conrving6-ucton is just
tion that the collisions occur instantaneously, which is a El - E ± ho = E(p) - E( ,) ± ill 0  (1)
reasonable approximation when the mean time between colli-
sions is large. At high fields, such as will occur in very small but the initial and final momenta evolve during the collision as
devices, the collision duration is significant and correctionf
terms must be generated (for the BTE) and to account for the p') = - f eE(tn) di" (2a)
actual nonzero time duration of each collision. If the instan-"Or
taneous collision approximation that leads to the BTE is
relaxed, an additional field contribution appears as a differen- ( =' - eE(r") dr". (2b)
tial super-operator term (see, e.g., the discussion in (71) in

the collision integrals evaluated in the momentum representa-
tion, resulting in an ICFE [281, 1291. In the emission of an optical phonon, where the electron is

The [CFE can be partially understood by the following scattered against the electric field, the field will absorb a por-
simplified model. In the Boltzmann case, the collision occurs tion of the electron's energy during the collision, and hence a
instantaneously, so that the carrier enters the collision sphere reduction in energy loss to the lattice will be favored. The
at one point and instantaneously exits at a second point, called opposite effect, an enhancement in energy loss to the lattice,
b for reference. However, the collision does not occur instan- occurs for emission along the electric field. These effects can
taneously, but requires a nonzero collision duration rc . In this be incorporated into the appiopriate scattering integrals used
case, it can now be accelerated by the field during the collision, in solutions to the Boltzmann equation, and this has been
Thus it exits not at b, but at b' some time At =r later. The carried out for the transport of electrons through SiO 2. For
points b and b' differ by a modification of the momentum electric fields above (5-6) X 106 V/cm, the broadening and
conservation relations due to field acceleration during the col- shift of the scattering resonances produce a noticeable effect
lision. When r, begins to become comparable to r. the mean upon the velocity-field relationship, and this reduction in
time between collision, this ICFE will have a significant effect threshold can be further observed in the impact ionization
on the transport dynami,,, particularly in the transient re- rates in SiO. Only with these modifications does the Calcu-

sponse region. lated ionization rate compare with the rates measured by
The mathematical details of the ICFE have previously been Solomon and Klein 1311. I

given 1271, so we shall not go into these details here. Rather, Although the ICFE is exceedingly large in SiO2 because of
we shall merely cite some of the supportive evidence for the the polar nature of the phonons here, it is also significant in
observability of the effect. In very large fields, such as can the case of St. In Fig. I , we plot the collision duration versus
occur in SiO 2 near breakdown, the ICFE can indeed by very field and compare it with the momentum relaxation time
significant (301. Two major modifications of the scattering F = m*1ie (m* here is the conductivsi. mass for Si and is
integral occur as a result of this intra-collisional process First, obtained by a sum o.et the multivalle) band structure). where
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limit, e(F) is the quasiparticle renormali7.ed energy, h/r is
the joint linewidth due to collisional broadening of the initial
and final states, and r; takes the +I. -! for phonon emission

10 or absorption, respectively, in the in-scattering. For the out-

scattering term, the roles of , p' ar- interchanged although
this does not upset detailed balance in the equilibrium sense.

In small semiconductor devices, where the dimensional scale
is of the order 03 pAm or less, the carrier concentration will in

1o" 300 K general be relatively high. We use the drifted Maxwellian
approach to developing a set of coupled balance equations,
using (3) instead of the BTE. With this approach, a hierarchy

•o ,0 106, of moment equations can be generated, from which the

Field (v/€ini various parameters can be determined 1101, [II. These
Fiel 2./l e 0moment equations include first-order effects arising from

Fig. 2. The velocity-field curve for electrons in Si as calculated by a msdrifted Maxwetlian approach. At high fields, the field weakens the the nonzero time duration of the collisions and general retarda-

collisions (dot-dashed curve b) causing an increase of velocity al- tion effects [341-(361. Starting from the density-matrix
though the collisional retardation stops this effect (solid curve). The developed form of the. BTE, we have shown previously that
low-frequency curve normally seen (for c = 0) is the dashed curve a. cdeloperm oei BE e ha sw previocollision terms derived in the normal case, but modified for

intra-collisional field effects, must be convolved with a decay
A- vlF is -the- mobility. The effect this has on the velocity- effect over an effective collision duration. Thus the balance
field curve is shown in Fig. 2. Also shown is the countering equations are modified in a straightforward fashion, although
effect of collision retardation discussed in the next section. the details are much more complicated. This latter follows

The ICFE is especially noticeable at high fields, where it from the role of the intra-collisional field effects, which both
essentially eliminates the scattering by the low energy inter- broaden and shift the resonances, effectively lengthening the
valley phonon [32]. This phonon is already weakly coupled effective collision duration and weakening the effect of the
since it scatters throu2' a first-order interaction (331 but is collision itself. If (3) is' Laplace transformed, the moment
normally an effective scatterer at high fields, equations can be developed by multiplying by an arbitrary

Ill. THE RETARDED TRANSPORT EQUATION function O(F), integrating over the momentum, so that the
moment equations are developed in the transform-domain,

When the ICFE is included as a modification of the lowest and then retransforming. This yields (I I
order kinetic equations, a high field quantum kinetic equation,

which replaces the BTE, is found as (271, (28] /aO - eE- (V O = exp (-t'/r) (Jt(t - t'))dt'
af,(-,t) - I_a + F(t) -VP t)at (5) -

where
f dt''[ (S(F,-F';1, t') f( 't')

- S(-',p;tt')f(-,t')} (3) (04 (t - -r) 170(r)l d- (6)

where the momenta F,F are explicit functions of the retarded and F. is the relaxation rate for 0, so that 0 c = F is the time-

time t' on the right-hand side through the relationship of (2), rate of change of O(F) due to collisions. The result in (5) is

and the transition terms S take the form, for inelastic phonon particularly interesting, in that it allows (O >to be evaluated in
scattering the case of instantaneous scattering, and this result to be

S*, ' ,T h ~ t')=R re r- 9 averazed over an effective collision duration Tc, weighted by
Sep the function exp (-tire). If, as is the case at low fields, (6,)

q does not change during the collision duration rT, the normal

( I I 1) result (t >> r-) is obtained. However, in large fields, where

2 r
+ l 2.p 2 the intra-collisional field effect is important, the variation of

(0c) during the collision becomes important. These effects
Sdt" (4,),] will also be important in high-frequency transport where the

• exp -; (4) collision duration becomes comparable to the relaxation times
and the period of the wave [371. Frc,..i the form of (S), we

where 03 is the argument of the normal 6-function and is given note the right-hand side (RHS) is such that the nonzero

by (I). The two exponential factors in (4) are related to the collision duration must be combined with the normal non-
joint spectral density function, which reduces to an energy Markovian nature of transport on these short-time scales 1341-
conserving 6-function in the instantaneous collision low-field 1361, so that the momentum relaxation time must be con-
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2.0 si D(E, w), where E is the electric field and w is the frequency.
300K Not only is the diffusion coefficient necessary for evaluating
o v.operating characteristics and high~frequency characteristics, it

"o provides a fundamental characterization of velocity fluctua-
tions in the system and their contribution to noise in the

:.o. -device (381, 1391. If diffusion is relatively well understood
." .for low fields, this situation does not carry over to the case of

high electric fields (391, (40). The general case for high-field
ci transport in semiconductors differs in that relaxation of the

velocity fluctuations is to a nonequilibrium steady-state 1411
and the process is nonlinear (421, [431.

0 0.2 0.4 0.6 0.6 1.0 The fluctuation response in general is complicated due to the
1Id s C. many physical processes involved, but the velocity fluctuation

(a) can be considered as having two main contributions: v' = v(t) -

2.0 ( ) = v" + u'. The first of these u', is the velocity fluctuation
arising from a fluctuation in carrier energy: u' = u(c + Ae) -

s00K u(e); while the second v" arises from velocity fluctuations
20 IkV/€ about u' 1431, [441. These various factors can be observed by

o studying, not the diffusion coefficient itself, but rather by
studying the velocity autocorrelation function 0'(t), which is
the inverse Fourier-cosine transform of D(E, w). If we define

> 0'(t) as

'() = ([v(t + to) - (0)) [v(to) - (0)1) (7)
then it is found that for high electric fields 0'() decreases

0 0.2 0.4 0.6 0.6 5.0 initially as an exponential, becomes negative, passes through a

t1o,) minimum, and relaxes finally to zero [431. This process is
(b) basically related to the fact that, in general, energy relaxation

Fig. 3. The velocity response to a step, homogeneous field of 20 is slower than momentum relaxation, and the above behavior 0
kV/cm in Si is shown as a function of time (a) and of distance into can be expected to occur via the same processes which lead,
the semiconductor (b). The fully retarded collisional interaction is et
used for the solid curve, while an instantaneous collision model yields e.g., to velocity overshoot (211, 1221. The detailed behavior
the dashed curve, of 0'(t) assumes more than academic interest as semiconductor

devices begin to assume submicron dimensions. In Si, for
volved as in (5) and the result re-convolved with the momen- example, the time duration of 0'(t) can be of the order of a
tum. The details of this will' be presented elsewhere, but the picosecond. So as channel lengths drop below say 0.3 in,
resulting velocity-field curve for Si, calculated for f(E) as a correlated electron motion and enhanced noise in the devices
retarded and drifted Maxwellian, is shown in Fig. 2, for can be expected to occur.
E l1 (111). In general, the diffusion coefficient D(c, E) depends upon

Calculations of the transient response have also been made the velocity fluctuations in the electron system and is related
for Si. The details of the coupling constants and phonon to the noise power spectral density S(o) associated with these
parameters are those normally accepted. In Fig. 3, the tran- fluctuations. These are related as (for longitudinal diffusion)
sient response for a steady homogeneous field of 20 kV/cm,
applied at t = 0, is shown. The response for a retarded colli- D(w, E) = S,(co)/4 = 0'(r) cos (w7) dT
sional interaction rises quicker and settles faster than that of Jo
the unretarded case. The quicker rise follows from the re-
tarded momentum relaxation effects, while the faster settling ([( + )- (0) [()- (0) cos ( r)d T

occurs due to retarded energy relaxation effects which causes foan overshoot to occur in the temperature as well.
The collisional retardation speeds up the transient process (8)

primarily due to the effect of slowing down changes in the
effective momentum and energy via collisional relaxation as where all velocities ate understood to be longitudinal. The
well. The small-signal ac mobility is extremely sensitive to principal difficulty in calculating transport parameters, and
the energy distribution function, so it is extremely important particularly 0'(1), in these systems lies in the complicated
that any simulation technique be very efficient in yielding this energy dependence of the many scattering processes. In
portion of the distribution function. the past few years, however, ensemble Monte Carlo tech-

niques have been developed which can be used to calculate
IV. DIFFUSION AND 1it* AUTOCORRELA1ION F:UNCTION these transport parameters with high resolution, and this has
One of the most fundamental parameters required for been used to calculate the correlation f.nction for the total

modeling semiconductor devices is the diffusion coefficient velocity. 00) = (vQ + to) v(to)) = 0'(t) + () (all calculations
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Fig. 4. The total velocity conelation function #(t - to ) a W(t) v(t 0 )) as o'

a function of t - to for an applied rfeld of 25 ky/cm. The curves are
normalized to ( '2) and 00 is (u) /(v), the final value. The individual s (.-

parts of the curve are discussed in the text.

shown in the figures have #(t) normalized to (v2>) 1401. The
ensemble of electrons was initialized as a Maxwellian at the . .
lattice temperature 300 K and was assumed to reside at g
x = 0 at t = 0. A homogeneous electric field was applied at s

=0, and the ensemble allowed to evolve in time. After a ;00 K

reasonable period of time, the ensemble was in a pseudo- 2S kv.

equilibrium with the field and had a steady drift velocity.
After this pseudo-equilibrium was achieved, the longitudinal ,oo0,, 6 1?' ~~10"l '  

0

velocity autocorrelation function 0(t) = (Wto + t) V(to)) was t %. I ,.5 " 1

calculated for several initial times to. The stationarity of the Fig. 6. The Laplace transform Lot) and Fourier-cosine transform

system, therefore, is verified as well, and the averaging process S,(cw) (noise spectral density) of 4'It) = ((u(t + 1o) - (u)l. Iv(:o -

was carried out over the ensemble as well as over various initial v).)

times. In Fig. 4 is shown the variation of0t) as a function of
time t, for an electric field of 25 kV/cm. The initial fall of of T-o/,, with electric field. It is observed that ro/,, in.
0(t) is primarily due to momentum relaxation, with the local creases with the field,although not quite linearly.
minimum and subsequent rise due to energy relaxation as sug- In Fig. 6, the Laplace transform and Fourier-cosine trans-
gested by Price (431. The error bars indicate the spread of form of 0'(t) are shown for a field of 25 kV/cm. Contrary to
data points from the calculations and averaging procedures. linear transport, these functions are not simple monotonically

The initial exponential decay portion is significant. The decreasing functions for large w. Rather, they exhibit peaks
time constant of this portion of the decay of 0(r) is closely at high frequency. The origin of these peaks lies in the en-
related to, aid slightly larger than, the momentum relaxation hanced high-frequency conductivity 1371 in regions where the
time T, associated with the chordal mobility p = vdIE, rather energy relaxation process can no longer follow the ac field.
than the differential mobility dvd/dE (here we define the Thus these peaks have their origin in the same processes that
effective or average r, = m*p/e). The latter quantity has been lead to velocity overshoot. The oscillations in S(w) at high
suggested as the appropriate quantity for longitudinal diffu- frequency appear to be related to the oscillations at long time
sion. At 25 kV/cm, the velocity is becoming very nearly on 0'(t). While these oscillations may not be real. their pres-
saturated, so that the differential mobility is more than an ence and the shape of S,(co) has also been observed by
order of magnitude smaller than the linear mobility. This Grondin in GaAs 1451. From this figure, it is apparent that
difference is readily distinguished from the data in Fig. 4. enhanced noise will appear in Si devices at frequencies above
The decay of 0(r) varying as exp (-tr/to)at short times and at - 101 Hz and that correlated carrier motion can be expected
25 kV/cm, for example, is best fit with a vo of 7 X 10-1 4 s, for times on the order of a picosecond.
while r,, - 5.4 X I0- 4 s. The results or the decay constant
of the exponential portion of 0(t) being slizhtly larger than V. CONCLUSIONS
r, appears to be a general result, as it was checked at several In the above sections, we have examined the important
other values of electric field. In Fig 5. we plot the variation time and distance scales that are important in small sericon.
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ized in (391. 1431 P. Price, "Noise theory for hot electrons.- BM). Ret Derelop..

1391 R. Fauquembergue. J. Zimmermann, A. Kaszynski, E. Constant. vol. 3, pp. 191-193, Apr. 1959; Also 1421.
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HOT ELECTRON NOISE PROPERTIES OF SEMICONDUCTORS IN THE NON-ZERO

COLLISION DURATION REGIME]'

P. Das *D.K. Ferry* and H. Crubin"

Re'rsse~aer Polytechic institute, f)roy, MY 22152, U.S.A.

*Color-cdo state University, Fort Collins, CO 80523, U.S.A. ..

-Scientific Resea-rch Associates, Glastonbury,, CT 06033, U.S.A. .

Rksumi.- Pour caractiriser le bruit de cooposants en rigime d'ilectrons-chauds.
on rksoud l'iquation de Langevin en incluant les effets dui temps de relaxation
de l'knergie et du moment dans l'approximation d'uma distribution maxwellienne
diplacee. On tient aussi compte de la durrie de collision qui peut itre une
fraction non n~gligaable du temps de relaxation de Vinergie et dui moment. On
sait qua la densiti spectrala de puissance de bruit et par suite le coefficient
de diffusion (en petits signaux) at I& fonction d'autocorr~lation de I& vitesse
sont reliies 1 1& conductiviti microondes des semiconducteurs (pour las petits
signaux). Les composantes transversales at lon~vitudinales de cas grandeurs sont
calculies en incluant leur dipandance de la durie de la collision. Un calcul
numirique utilisant las constances dii silicium a Ci diveloppi at montre la
contribution importante des duries da collision non nuhlas.

Abstract.- To obtain the noise properties of devices under hot electron condi-
tion. Langevin's equation is solved including the effects of energy and momen-
tum relaxation time in the displaced maxwellian distribution approximation. The
collision duration, which can be a significant fraction of energy or momentum
relaxation time for very small structured devices, is also included. It is known
that the noise power spectral density and thus the small signal diffusion co-
efficient and velocity auto-correlation are related to tbe small signal micro-
wave conductivity of semiconductors. Both the transverse and longitudinal com-
ponents of these quantities are calculated including their dependence on the
magnitude of collision duration. Numerical calculation using the constants of
silicon has been performed and it shows the significant contribution of the non-
zero collision duration.

1. INTRODJC;ION

It is well-know.n that the microwave conductivity of semiconductors
varies as a 'unction of frecuency and that this functional dependence becomes

quite com~plicated when hot electron transport is included (1). This occurs

because one r'ust consider not only the momnentum relaxation timne of the carriers
but also the energy relaxation time and any consequent differential repopu-

Partially sL; ':orted by 0O\R. NSF and AFO'SR

On leave at :t.e Electrical Engineerine and Co~pucer Science Depar~ment. University of
California a: San Diego, V.S.A.
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latlon in many valley systems (2-4]. In particular, enhanced conductivity

arises at high frequencies due to the process of velocity overshoot. In

small semiconductor devices, the time scale of carrier transport through the

device, with the expected high fields present, is such that the device dynamics

may well be dominated by the transient response characteristics of the

carrier velocity and distribution function [5]. However, if this becomes

the case, major modifications are required to the Boltzmann transport equa-

tion [6] and to the current response equations within the devices (7.8]. The

fact that the relaxation times are varying, due to the evolving of the average

energy, on the same time scale appropriate to the velocity response and that

a finite, non-zero collision duration exists both lead to a complicated,

multiply-convolved form for the transport balance equations (8].

It is also known that the noise properties of semiconductors are

related to the hot electron microwave conductivity [9,10,11,12]. For

an example, the noise power spectrum is proportional to the real part

of the microwave conductivity. As the noise power spectrum is related

to the velocity auto-correlation through Fourier transform and also to -

diffusion co-efficient, all these qantities can be obtained from the

knowledge of microwave conductivity as a function of frequency. Recently

this microwave conductivity has been calculated in the non-zero collision

region [13]. applicable for a single valley semiconductor. The purpose

of the present paper is to extend the calculations to multivalley case and

relate them to the noise power spectrum, velocity auto-correlation and

diffusion co-efficient through the solution of Langevin's equation.

II. MICROWAVE CONDUCTIVITY

i) Parallel polarization case

Let us consider that the semiconductor is under the influence of a d.c.

bias electric field. F in addition to the nicroave field given by FleJit
0*

where FI/F < < I and t is the angular frequency of the microwave field.

For the parallel polarization case we assume that the direction of FI and F0

is collinear. Using the formulation outlined in ref. 13 it is easy to show

thE followinq equations for the perturbed drift velocity v e j in the

presence of a d.c. value v.. Cefore we write down the equations we note

that the inclusion of a non-zero collision time, 7 . does not chance the

final equilbriuF value, vo . Also the only change in the momentum and

energy balance equations imposed by 1c is to change the momentum relaxation

tine - by ,m(l4Jc ) and the energy relaxation time, 1e by *e(l4j fc) .

Thus for a single valley case, one obtains

mvIrmo _v or1 eF1  cr.centum

- J 4c iJ rrc m balance),
c
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juAT V reo kTjr + 2e (voF +v Fo) (energy balance) (2)
S 1 +Tn I+ik T 0

m is the effective mass of the carriers, k is the Boltzmann's constant. T

is the effective temperature in the displaced Maxwellian distribution

approximation and

I = r =m +r TleJWt
I m mm
1=re =reo rTeJwt

I e e eo r'

The subscript "o" denotes the equilibrium value and the prime denotes the

differentiation with respect T taken at T=T 0. Both im and re are effective

relaxation times which include the effects of all possible forms of scatter-

ing mechanisms relevant for the case (e.g. acoustic, optical, intervalley

phonons, impurity scattering etc.).

For the two-valley case, following ref. 14, one obtains the following

modified equations,

mvlirmo
i  mVo rjli+ eFl

jWVi " + - (momentum balance) (3)
li I*fc JT i m i

kTlireoi kT.oirTli 2^2
jwk~li - 1ci +J i e v FO) 

n. ker. r n. n., r!T
0 j 0 ij° n 1 + I ] (4)

n iocl+LnCj njo ,o 1 0

(energy balance)

jwil n " r ni " nio rni n ji rnj ' njo rj (5)

nll+ n2 1 = 0. (number balance)

The subscripts i, j =1, 2 and denotes the various parameters for the two

valleys. Tni and Tij denotes the relaxation times associated with the number

balance and intervalley phonon respectively.

rni T nI lS
,ni

r,, = ij

The quantities rij, rnj, r i and r! are functions of TI only. k9 is the

ch-,-acteristic phonon te-,perature used in equ. (4) only for convenience.

Equations (3-5) can be-solved to obtain an analytical expression for the

effective ricrowave conductivity. vi1 . However, it is rather cu-bersole

although straightforward and will not be given here. For numerical calcula-

ticns it is better to tackle the equations directly. The above equations

0
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can also be extended in a rather straightforward manner for the nulti-

valley case having more than two valleys.

For the single valley case, however. one obtains

0 4jWT (1j -4nTW) )

where po e
ma~

TINw) =(14jun ) -Y--~- W

andT

-Y (W 43 jWT1e 0+jun )
eo e 7 e

ii) Perpendicular polarization case.

if F1I is normal to 6 0 then the perturbation in effective temperature

is zero for first order calculations. Thus for this case equ. (1) simplies to

j v Ir mo +eF1(7
i4jun r m

From~ this we inmediately obtain

For the two valley case one obtains for each individual valley, an expression

for mobility given by equ. (8). The microwave conductivity for the two
valley case is given by

(W 101()+n20V1 w 9

n104 20

Ill. HOT -ELECTRON NOISE PROE -P.TiES.

To obtain hot electron noise properties one reed to solve the tancevin's
vouat~on. For this purpose one -ssu,-,es that a bias electric field is

,pifacross the semcor~jctor in adeitior. to the sinall fluctuating r .ndcxn
-l-t-cfield. thus, the tfflerrce ---- en the prc.le. solved in the last

'--L.ect, and that* of Iaevir's equation is that one should consider F1 s
th ,.rtral c:-.p~nent of the fluctuatino electric field. As the uquations

Ml-(6) are lincar equations aroind a bias electric field, the solution of

12]. The rioisE- spectral density for the equivalent noise voltage q{w)

.or the siriolt valley case is Given by for the parallel polarization case

A-v.T (n 0e) Re L (11 (10)
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where A includes the dimensional factors. For the perpendicular polarization

case p|1 is replaced by the U1 . Applying Weiner-Khintchin theorem one

obtains the velocity auto-correlation. < v(t)v(t+.)>,to be given by

<V(t)v(t+T)> a F_ l r(.)]

where F denotes inverse Fourier transform and tr(w) is the real part of

the microwave mobility. As the diffusion co-efficient D(w) is related to

the Fourier transform of velocity auto-correlation, one obtains its value

from the extended Einstein relationship

R D(.) = T( 

2

e q

where Re denotes the real part.

Numerical results and discussion

The small signal microwave conductivity was calculated for Si for an

applied d.c. field at 30KvCm -1 . The scattering mechanisms and coupling

constants are those used previously for Si [15-17]. The real and imaginary

part of p are defined as

V tir + jWUi (13)

and are plotted in fig. I and 2 for the parallel and perpendicular

polarization cases respectively. The peaking at high frequencies is more

pronounced in the presence of the non-zero collision duration, a result

expected from calculations of overshoot velocity-itself.

00

Fig. 1. Parallel Polarization: The real (a) and

imaginary (b) parts of tle a.c. small sional r-bility

for an applied d.c. field of 30 kV cr-I inSi. The
solid curve includes the effect of a finite, non-zero
collision duration, while the dashed curve ignores
this effect.



C7-232 JOLRNLAL E PHYSIQUE

The peaking observed leads to an interesting shift of the apparent
plasma edge in the semiconductor. In fig. 3 we plot the reflectivity

IRI defined below for the parallel polarization case.

IR = jE 1(14)
11E I1

where

= (~l - ne~ij(w)]

and c is the static dielectric constant of the seniconductor and

SS

NOg. 2 Perpendicular Polarization: The
real (a) and ir-2ci nary (b) parts of the
a.c. small sicnal mobility for an applied
d.c. field of 30 kV cm1.- in Si.

Fic. 3. The reflectivity of Si in a hich electric
field. Tne dctted curve ?ssu:-es cold carriers with
ri~bility -O but a different chordal vucbility. The
solid curve includes the effect of the finite
collision duration. A dopinS of 1018 cr.-3 is



C7-233

dotted curve assumes cold carriers with mobility v. while the dashed

curve assumes hot carriers with the same jo but a different chordal

mobility. The solid curve includes the effect of the finite collision

duration. A doping of 10 1 cm-3 is assumed. It is observed that the

presence of hot carriers merely serves to smooth the apparent plasma

edge. However, for tc f 0. the minimum shifts significantly to higher

frequencies.

The velocity auto-correlations obtained by directly Fourier trans-

forming ur (w) is shown in figs. 4 and S for the two polarization cases.

As expected, it is observed that the inclusion of non zero collision

duration contribbtes significantly to the negative swing of the velocity

auto-torrelation.

In conclusion, the small signal microwave conductivity of semi-

conductors in the hot electron condition has been obtained in the non-

zero collision regime which in turn has been used to obtain noise properties.

lS

* K.*

r

Fig. 4. Velocity auto-correlation Fiq. 5. Velocity auto-correlation
for the parallel case. Units are for the perpendicular case. Units
arbitrary, are arbitrary.
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Limitations to Ballistic Transport
in Semiconductors*

D. K. FERRY, J. ZIMMERMANN", P. LUCLI, AND H. GRUBIN

Abstract -Limitationls to the range of ballistic transport in semicon- the electrons - the correlation functions -is recover able.
ductors are discussed on the basis of electron correlation within an Indeed, it was just this view that led Kubo to formalizec trans-
ensemble. It is shown that transport eqluations, Correct in the last tran- port theory entirely in terms of the correlation functions I 11.P
sient regime, include these correlation effects. 121. Wc propose to show how proper treatment of the initial

transient response limits the range of ballistic transport.
Nrecent months, it has become necessary to talk about bal- In a semiconductor subject to an applied elcctric field, the

i listic transport in very short semiconductor devices 1131. carriers respond to this field as well as to a random force which
Usually, it is assumed that if the device dimension is smaller leads to velocity fluctuations as well as to the concept of tem-
than an average free path, based upon a value interpreted from perature (thermal fluctuations). The response to the applied
the low-field mobility, collisions will not be important. Thc field (applied at r =0) can be written as 1121
basis for this is usually placed on the often-used semiempirical
transport equations 11,41.-

M ~ d (t) = (eFm ) f 0i, (t'0) dt', (3)
*dvd qF -mi'd/rm where 0,Q(:0) is the non-stationary, two-time velocity auto-

d correlation function whose amplitude is normalized to unity
JE =qVdF -(E -E)r, (2) at I'=0. Although Kubo obtained (3) for the equilibrium situa-

where E and E, are the average and zero-field energies, and ti on, its validity has also been established for the non-equilib-
rium, high-field case 1131. A linear increase of the velocity

Tm and Te are the empirical momentum and energy relaxation (derm a nyocrs oga Li osati ie

time, rspetivly.Howver ithasbee ponte ou tht tese To demonstrate this period, we have calculated the transient
equations neglect boundary conditions (5,61 and indeed neg- dnmcadvlct uoorlto ucinfrslcn
lect spatial inhomogeneities which can be dominant (6-81. dnmcadvlct uoorlto ucinfrslcn
Ballistic transport is usually treated by seeking the response to usnCnesml ot al apocsdpeiul 11
(1)-(2) of a pseudoparticle, the so-called average electron, as Figure I shows the initial decay of 0(t',to) (t' > to) for three

it evolves under the field. However, even without considering difrnNausot nldn 0 =0 hti vdn rmti
the complications due to spatial inhornogeneities. these equa- f~r sta h iedrto vrwih~i osat n

tinsar icrrctfo tetig hefst tanietreposeo for which the velocity rises in a ballistic manner, is exceedingly
carrers n smicoductrs.short, perhaps only 0.004 psec. evenz though the mnean free

A conduction electron in a semiconductor is not a free It.Me (-. 16 psec at I 0) is much longer. Thre decay of 6,

electron. Wkithin the effective mass approximation, the conduc- represents a decay~ in the correlation of the velocity fluctua-

tion electron is a quasiparticle whose effective mass describes tions as well as an increase in the dissipation because of col-

an averaged (and reniornialuzed) interac:tion with thle atons and lisions. This is due to the fact that collisions start to break up

the bound electrons. It should be apparnt that thle correlation tie correlation as soon as thle% occur, but the relaxatiionl time
is a hiydrodynamic aver age over thle ensemble rather than a

between electrons is Of Jill[ort011ceL This is more evidenfced %alue for act .ual collisions.
whe i i rConedtath ieceuainschste Equations such as (1) and (2). altliouch incorrect for time-

Boltzinarn transport equation. for ihK, average single -particle sae fteodrt~.hv rvntesle xteil

distrihutiori function is an approximation to the full niwfl- U50tul in device nliodeline.* Equivalent vers~ons. correct even on
body problem of large numbers ofconductiofin electrons [9.l0). tesottm cl.h~ enotie eety(511
While it is possible to project such Sinle-par[Jcle eQLiationlS. The s aregive byl.h% enotiedrcn[-(511

these must be cast so description of tile- correlations 'between Teeaegvnb

Minuscript received June 8. 1981; rcevied July 20. 198). =jE n dt'X X1.r J, j (t - 1'). (4)
D.. K. Ferry, J. Zimmecrmann. and P. Lugti are with the bep).iriment

V~ Hecirical Engiee-ring. (olofido State Lniversit%. Fort Collins, CO
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CT 0603 3 di =qsj~l-rt01-fd~t~' .1X.t)
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F t ince, %here X, and X,. are d,:a% !misctions dated to) the vehk-miv

Ili'~5', N~4).~Kii>C '~K il
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Fig. 1. Normalized velocity autocorrelation function for electrons in Fig. 2. Response of the average encrgy of an ensemble of elcctrons in
silicon. op (f - to), for three initial times to. The function o. is con- silicon for E = 50 kV/cm applied at r=0. Thc data points arc calcu-
stant only for a vcry short time. la ted by an ensemble Monte Carlo techniquc.

and energy correlation functions. Indeed, the time integrals consequence, the transient regime must be treated so that the
of X~, and X, give the relaxation rates 1/Tm and 11T. in the important role of correlation among electrons can be included.
limit as t . c In this regard, (4) is particularly consistent with Indeed, these results indicate that ballistic response occurs on
the correlation function approach of (3) as it is an ensemble time scales shorter than in silicon and that any high velocities
average of a generalized, retarded Langevin equation [131. greater than the steady-state must arise not from ballistic
Except for the details of the correlation function and the con- effects, but from overshoot effects caused by the details of
volution in the relaxation term. (4) differs little from (I ). Such energy and momentum relaxation ( 18,19]1. The importance of
is not the case for the energy equation (5) because of tile contacts and boundary conditions is also clearly evident from
presence of the memory function in the driving term. (3), as these determine the '*equilibrium" state of thle carriers

One problem in treatment of so-called ballistic transport at t = 0.
has been in handling the energy equation. In these. Ehas been
treated as tilse drift energy. In actual fact, the energy is domi- REFERENCES
nated b,, the random (thermal) motion of thle carriers, and it
is thle total energoy which must be treated in equations such as Ill St. S. Shur and L. F. Eastman. "Ballistic Transport in Semicon-

(5)ductor at Low Temperatur1eS for Low-Power. High-Speed Logic."
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INTRODUCTION

Over the last two decades, the electronics industry has been involved in
an ongoing revolution in digital large-scale integration (LSt). This digital
revolution, spawned in the late 1960's, is leaving a permanent imprint on
all aspects of life today, especially as the implementation of microelectronics
has spread to the consumer industry. Fueled by the drive to less expensive,
but more co~plex and sophisticated, integrated systems, the growth of LSI
has in fac been phenomenol. The complexity of these circuits, in terms of
th e ntis- _r of individual devices on a chip, has approximately doubled each
ve; over -.-.c time span. This is shown in Fig. 1. There are, of course,
s,rveral fa.~tors which contribute to this increase in complexity, including
m~ajor effects arising from increased die size, increased circuit cleverness,
and reduced device size. This latter factor, reduction of the individual
feature s:ze in ai device, is of paramount importance and dimensions of labora-
tc-.y syste~s aire currently down to the sub-micrometer range. Indeed in Fig. 2,

teleu~e7-.a %-.rus is overlaid over a modern integrated circuit in order to
e-.p.3size :-.e smallness of individual devices today. Progress in the micro-
ejectronics area is tied inevitably to the ability to continue to put ever

una~' .-cers of smaller devices on a chip; i.e.--the continual move to
.-lar-s:~e n-ezrat ion (%LSI) will be of paramount importance to this

t~nu'd :c.~~'. It is ap.,arent that extrapolation of today's technology
.s:11 Produ.:., -ndividual 4iovices whose dinensions are of the order of 0.1-0.3

nro.~t's3-7). On t",. other hand, the advent of high-resolution electron,
:':-~i. r-. ::ls ,4 - c ~ beam lithography is leading us toward an era in

~Ich ind.: a. !uro sizes might well be fabricated on the molecular scale

*Thjs ork ., supported in part by ON'R and ARO.
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balance tells us that the electron temperature Increases with increasing elec-

tric field and departs significantly from room temeprature when the electric j

field exceeds a threshold value. The effect of the Increasing electron temper-
acute is to decrease the average collision time and to decrease the steady-
state velocity, given by (3). If the momentum and energy scattering times are

similar in value, then both momentum and energy will follow changes In electric

field at approximately the same rate and the solid curve of Fig. 3 describes

the approach to steady-state. On the other hand, If the energy scattering O
time is significantly longer than the momentum scattering time, the average

velocity of the carriers will find its value continually corrected until steady- K

state in the energy distribution is reached. The velocity will then relax in

the manner shown by the dashed curve. A similar situation may be expected when i

the electric field is decreased, for here it also takes a finite tlme for the
electric field to decrease and for the electron temperature to decrease.

Host field-dependent velocities and values for the saturated velocity

assume that steady-state conditions are reached. Clearly, this is not the case

in very-small devices. In Fig. 4, we show the average velocity as a function

of distance for electrons in Si seeing an electric field of 50 kV/cm. Also

seen is the small change induced by retardation of the transport. It is clear

that the relaxation rates T-
1 and T-1 are evolving on the same time scale

as the velocity response itself and that correlated motion needs to be considered.

Indeed, the correlation function for electrons in SL is shown in Fig. 5 and 6

The vertical scales are shifted to allow ease of plotting. What is clear here

is that 0(t) (the stationary quantity) lasts for a time fully comparable to the

transient portion of the velocity response. In fact, it can be shown that [13]

vd(t) - I (ot') d' , (4)

where I = v 2(o)> and *(t",t') is the general non-stationary two-time correl-

ation function L,(t",t') - #(t) for t' - t" + t and t" - -). The proper treat-
ment of transport in the transient regime thus requires inclusion of memory

functionals whicharebeyond the channel Boltzmann equation approach r14]. This

leads to modifications of the relaxation terms in (1) and (2). The results for

Si are also shown in Fig. 4. It is evident however, that if the channel were
only 200 A long, the velocity would never reach steady-state. While this is a

very short distance, the effect is pronounced in the III-V materials and results

Time

.igure 3. A-7roach to steady-state of the velocity response with and vizhou:
overshoot e::ects.
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ning to dominate the Interconnection capacitance at a particular node. As a

result, the above simplification is likely to be seriously in error for submic
configured VLSI systems. where the isolation of one device from another (and byi
generalization, from the surrounding environment of insulating and conducting
regions) will be difficult to achieve.

The possible device-device coupling mechanisms are numerous and include .4
such effects as capacitance coupling, the line-to-line parasitic effect men-
tioned above, and wave-function penetration (tunneling and charge spill-over) .1

from one device to another. Formally, however, one may describe these effects-/
on system and individual device behavior by assuming the simplest form of inter-

device coupling -- nearest neighbor coupling -- and using the formally exact
Liouville-von Neumann density matrix equation for the full system to unravel
how the system behaves. This task has been described previously from various S
different viewpoints (16,171, and the basic ideas are reviewed below in order
to provide a baseline to which the system approach can be compared.

In the present context, a VLSI system is defined as a net of N spatially
delineated structures, e.g. contacts, devices, interconnects, isolation/insulatorl
regions, etc. Control over the system is exercised via a set of applied fields .
(or voltages) and input and output currents. These are labeled Fe Ixt i 1
where F1xt is the set of generalized applied forces acting on the i-th element. .

The applied generalized forces give rise to local applied forces Fi which are thei
self-consistent solutions of the appropriate macro-equations, e.g., Poisson's
equation and current continuity equation. The latter depend upon the dynamical ;

variables of the elements concerned, and these variables are completely specifiedi
as quantum statistical expectation values of the individual device/element den-
sity matrix p(i;t). If there is no coupling between devices, we have simply

the set of N Liouville-von N!eumann equations of motion (using units such that6= l)

i -- i;t) = H(i)o(i;t) , (5)

where H (h.,., is the commutator generating Hamiltonian super-operator.
H(i) = H(iF'(t)) is the Hamiltonian for device i and is assumed to be time
dependent through the coupling to the generalized time dependent forces F1 .
If the device-environment coupling occurs on a time-scale fast compared to
processes within the device, (5) can be reduced to a single :d Pi which satis-
fies (16]

ih ; - dd + -ed . d + Y(o)P d  (6)

vhere Hd is the Hamiltonian for the single device, Hed is the renormalization
tern for the effective real part of the device-environment i=neraction, and
(o) is a dissiDative ten for losses to the environment, suc- as surface-

roughness sca-ttring in an MOS system. The term in Hed is critical, in that
regularity in e replication of the devices, such as an arra.. can lead to 0
cozplete renl.--1ization of the energy structure and super-lattice behavior.

Recenl.. .te n'as proposed a surface super-lattice structure tha:
:ona~ll s - r a charge-coupled-device (CCD) array. -- e device dizen-
sio:-.s, require=-- -re - !O spacings for the array, which is beyond the current
%1S1 technocz . but in the limits of research efforts in electron- and ion-
boa_ lithoga'-.. Altough such lateral super-lattices are .- 'eresting in their S
o =n right, s:- they easily allow full three-dinensional Quan:ization within a
quantized in.' on la.er, they are especially interesting as they should also

0!
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Figure 10. (a) Value of gate center-to-center spacing required for a
super-lattice to form with n14=6kBt, where n is the reduced energy L22L.

the mini-gap. These effects are veil known in bulk semiconductor materials,
leading, for example to correlation contributions f 23] to band-gap narrowing
(24]. Whereas a coulomb contribution to the potential of a few millivolts is
sr7.3lI when compared to a band-gap of 1-2 volts, it can be a dramatic effect on
a mini-gap whose total value is only 10 millivolts or so. This effect was care-
fully examined by Kroemer [19] for the case of a one-dimensional super-lattice.
suc h as can occur in .an organic chain molecule or polymer. The basic idea is
o. course that charge fluctuations across the mini-gap lead to a coulomb poten-
tial of q - g - 2 kF, so that the conditions for a Kohn anomaly (251 are already
sati.sfied. Vnile we have been concerned with optical pumping of the electrons,

i:sould be pointed out that optical pumping of the phonons can lead to phase
tastions as well (26].

If a population is induced by some technique, there exists the possibility
ozeoes appearing in the dielectric response. In this case, a non-zero value
0 can exist without the application of the external field Va. This rmeais

hsuper-lattice potential can be t;et up by a chargo instability under
~:sthez:sdlves. While it was initially pointed out that this charge

on E wa similar to a Kohn anonalv, the instability itself is a classic
*of a --eleri's instability. The charge instahiility spontaneous leads_

z, clarge-density wave which creates the lattice potent ial. This behavic7
~Ustratec Fig. 11.

§suitable m-aterials are selected, it 013c~; ht lateral sner-lartt ies
cl . iabrica:ed by today's technology, or indeed can be expected to arise% in

dsceVLSI arra--s. The f.-ct that these structures can show synergetic ba'_.ior
cenditions of population inversion suggzest that new functional perfor~ance
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DISCUSSION

Dr. Sandman: GTE - I am trying to understand precisely what you meant
by the term superlattice as you applied it apparently in the array of devices.
There is a well-kniown class of semiconductor superlattices, gallium arsenide
and aluminum arsenide, and I think you meant something different than that.
Could you specify in some detail precisely what you meant by a superlattice in
the context that you used it?

Prof. Ferry: You are referring to t'he extreme technique of laying
down precise alternate monolayers of aluminum arsenide and gallium arsenide.
This superlattice, of layered aluminum arsenide and gallium arsenide gives a
narrow energy well and a classic one-dimensional Kronig-Penney model, and it
works exceedingly well when you compare the results of that calculation to
the experiments. Now the concepts of superlattices are, of course, much
broader than that. What you should think of is that the reason you get
superlattice effects is the fact you have a periodic array of energy wells.

Dr. Sandm~an: In an individual chip?

Prof. Ferry: Think of this in the following way: under the gate of
a XOS FET. you have a potential well due to band bending. if you have a regular
array of gates, you will have a periodic potential well induced along the
szr.-,ace in the context o: a lateral superlattice. Now the spacing of those
-.eils deterines the potential and you have a two-dimensional Kronig-Penney

~ce. This :u-o-dimensional lattice is worked out in Brillouin's book on
peritodic structures, but you can have superlattice effects in the two-
c.-7ensional case. o the challenge arises if you make this on top of a layered
str-ucture bv "37-; because you can then have a three-dim~ensional superlattice

Dr. Sa7.11:an: This is the context in which you were using it?

Prof. 7,2rrv: .. iis is the contest, righit.

Dr. Car:ter: ~C'.-Thank you for a very well presented and nicely.
- ce ta!.:. I appreziate your effort. I have two questions. You have

7.Jn e d t h.i' t.a_ zU7. e: : ects of an array 0f devices, and so ny first quesiton
z. viht -pase effect in Josephson's juntICions which is a racroscopic

c .. tun effecz. is tha: the sort of array that you are talking about? Have
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people in the optical sciences and also that is using Interference methods for
storing the processing information. In Josephson's Junctions, this has also
been done in so-called SQUIDS where you do have well-known macroscopic
interference effects, but what I think is the really interesting question is
what happens to the theory of information in a non-local situation where you
are not trying to transfer a single localized byte but the byte is spread over
both an amplitude and phase over a large area. and I think there are people in
the brain business who have some strong ideas that this is already taking
place inside our head--some of us.

Prof. Ferry: Last week in Phoenix, I learned there is a group at
Cal. Tech. which is trying to apply the microscopic concept of spin glasses to
the way in which the brain handles information. I mention that only in passing
because I also learned at the same time that there is a group at IBM which is
trying to apply the theory of spin glasses to the way in which systems operate.
If you tie the two together, it might be interesting.

Dr. Buot: Cornell Univ. - I was wondering if you have thought of
using BiSb alloys as a matrix on which to lay the small metal dots? (Added in
editing - Two things conspire to increase the change of practically observing
quantum cooperative behavior in an array of normal metal dots or islands,
namely: 1) small effective electron mass in each metal dot, and 2) a small
potential barrier between metal dots).

Prof. Ferry: I have enough trouble handling the III-V's. I have
tried to forget about bismuth ant imonide. That is from the days when I was
doing instability experiments.

Dr. Buot: I was wondering if anybody has successfully grown bismuth
antimonide semiconducting crystal films.

Prof. Ferry: The last person I remember working on bismuch antimonid
was at Bell; it was some years ago.

Dr. Cooper: There was somebody at Illinois, I think Joe Green.

Prof. Ferry: I don't know if he was doing bismuth antimonide
There is a classic rule of thumb which has been put forward by Cyril Hilsum at
RSRE, which is that to bring any new material to the level at which you can
begin thinking about making devices requires something like a man century of
effort. I don't kno: that there is the intense effort on bismuth antinonide
ye, which would bring it to the level that people could think about using it.
Silicon has at leas: a kiloman century work of effort on it just since the war.

0!
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I. INTRODUCTION

A turning point in the study of semiconductor devices occurred with the

publication of the special January 1966 issue of the IEEE Transactions on

Electron Devices. Here papers dealing with the numerical simulation of

the space- and time-dependent behavior of the charge distribution within

solid-state devices implied, either explicitly or implicitly, that these types

of calculations could be used to develop the intuition needed to explain

device behavior.
Today, numerical simulations are regarded as part of a device physi-

cist's tools and are routinely used (1) when the device transport is non-

!inear and the device differential equations do not admit to exact solu-

tions, (2) as surrogates for laboratory measurements that are costly

and/or not feasible, and (3) in computer-aided device design. Specifically,
the kinds of devices most often treated numerically either require multidi-

mensional concepts for their operation or are dominantly hot-carrier

dependent. Transferred electron devices are examples of hot-carrier de- -

vices, but an MOS or MESFET requires two dimensions for conceptual

operation and is often modified by hot-carrier contributions. In any case,

through a heirarchy of differential equations, we are becoming increas-

ingly able to simulate the operation of devices such as these and to nu-

merically represent the effects of

(i) material properties (e.g.. doping variations).
(ii) physical boundaries (e.g., contacts. surface states). and

"0
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(iii) the environment (e.g.. adjacent devices, circuits) on device
operation.

This numerical ability, coupled with heightened interest in device phys-

ics and generated in large measure by the current VLSI and VHSIC pro-
grams, is also forcing a long-needed reassessment of the assumptions
used in device simulations. For example, most modeling of single-species
transport represents the current response by the equation

J = NepF + eD grad N + e aF/a, ()

where N is the carier concentration, e the electronic charge. F a field, g±
the mobility, D the diffusivity, e the dielectric constant, and i the time.
This equation is based on the Boltzmann transport equation (BTE) for a
distribution function only slightly modified by a self-consistent field [I].
For high-field, nonlinear, hot-carrier effects, the distribution function is
strongly dependent on F and the usual approach replaces MF by a non-
linear (F) curve, and D by a field-dependent diffusivity (2]. This
approach, although useful, avoids the problem of finding solutions to
nonlocal transport equations, which include spatial and temporal field-
dependent relaxation. Such solutions are especially important in GaAs,
where recent history has shown that concepts like velocity overshoot'
[3-5] profoundly affect transport in short-channel devices and the more
conventional devices operated at high frequencies. To account for these
effects, the BTE, rather than Eq. (1), must be solved.

The BTE is the cornerstone of semiclassical transport. Its central con-
cept is the idea of a single carrier-distribution function f(r, p. t). which
may be used to compute expectation values for macroscopic current flow.
When we examine this idea from a quantum-mechanical viewpoint, we
see some necessary averaging iff is to be regarded as a simultaneous func-
tion of position and momentum. From a device perspective, care must
therefore be exercised if f and/or the critical device dimension L are
smaller than an electron wavelength :%. For a quasi-particle with an effec-
tive mass in*.

A" = I//l"*vtherm. (2)

The effez's of o~ershoot are implhzi: in the results of {'].
Note iha: on an uliri. shori time 'zalc. electrons accelerate with the free. rather ,,..

the effective. mass [6] Also. although the constraint L > " is a safe one. it does not im,"
'hat the BTE is invalid in a ranee

\ < L_ < .\.

It (he ranze of validz of the i]iif h.i- not %,et been delne.:ted. Here A = I, :!0
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where A* is the thermal de Broglie wavelength, h Plancks constant, and v

the thermal velocity. For GaAs central valley electrons. A* - 270 A (see
Table 1).

In addition to spatial considerations, from a temporal perspective, the

BTE describes irreversible phenomena and it is assumed that collisions

occur on a scale short compared with an observation time. Thus, for ex-
ample, relaxation times should be short compared to transit times. This

assumption will be routinely violated in submicron devices (see Table 1);

and again, caution must be exercised in using the BTE.

It is clear that from a device-modeling viewpoint we are faced with
serious problems. On the one hand, the BTE overcomes many objections

to the use of equations like (I). On the other hand, the preceding argu-

ments suggest abandoning the BTE for ultrasmall devices and replacing it

with a quantum transport formulation. While the latter may be necessary,

the current approach is to retain the BTE as long as useful quantum ef-

fects can be incorporated, even when first-order quantum effects occur,

as, for example, the transport in quantized inversion layers [7].

The critical choices that must be made in examining the physics of

semiconductor devices is the principal reason for this chapter. In the dis-
cussion that follows we take a detailed look at some of the physical as-

sumptions underlying transport in semiconductor devices. In Section II
we discuss the semiconductor equations and the picture they provide for

the numerical simulation of GaAs and Si devices. We illustrate the discus-

sion with simulations of the transient behavior of two- and three-terminal

TABLE I

Critical Boltzmann Transport Parameters for GaAs

Parameter Variable Value

A,:tive region length L 10-1 cm. 10- cm
t Broc!ie wavelength A* = h/n'v 2.7 x 10- cm

at v= .5 X 107cm/sc,.
m 0.067 ,n,

Transit time L/v 5 x 10-'1 sec
at 1. = 10-1 cm.
t = 2 x 107 cm/s.ec

5 10-' sec

a, L = 10-' cm.
t = 2 x 10: cm/sec

._m time between r,, x I0-1 sec at 300 K.

colhision.; (momentum 5 x I10- 1 sec at 3000 K
r!.i,,ation I

Co!!:-ton duration r.2 1 I ' :

0 10 1 A M I'l', 11111'I'l
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GaAs devices. For silicon we consider the role of ion implantation in al-
tering the charge distribution within an n-channel MOSFET. In Section
I1. we examine the Boltzmann transport equation. Two aspects are con-
sidered: (I) What are the assumptions, limitations, and methods of solu- 0
tion? When the limits are exceeded, what quantum modifications are pos-
sible? (2) Where does the device physics using the BTE show significant
departures from that using the equations of Section 11. In the first in-
stance, modifications are introduced to account, for example, for finite
collision-duration effects. Here, on a very short time scale, collisions
cannot be regarded as instantaneous. Instead, during collisions, the car-
rier may absorb or lose energy to the self-consistent field. In the second
case, transient transport calculations emphasizing velocity overshoot
show significant BTE departures.

The discussion of velocity transients naturally leads into problems as-
sociated with collisionless transport in submicron devices. These
problems are, at first glance, trivial. However, this notion should be dis-
pelled by the unusually long list of questions asked by others in connec-
tion with vacuum-tube transport, such as: (1) How do contact properties
affect the current-voltage relation? (2) How will the distribution of in-
jected carriers and subsequent carrier-carrier interaction, for example, S
affect device transport? (3) How is one to interpret diffusionlike terms,
such as grad NT (where T is an electron temperature) when diffusion in
the sense of an Einstein relation is not a viable concept? The presence of
these questions for collisionless transport does not lessen their impor-
tance for transport with collisions. In both cases the answers have not
been found and represent current work in progress.

The discussion of Section III is primarily concerned with solutions to
the BTE. The numerous corrections to it serve as a reminder of the extent
to which new physics forces a close scrutiny. Most of this reexamination
is done by comparing approximate evaluations of the one-particle
quantum-density matrix with its classical analog, the distribution func-
tion. The connection between the two is reviewed in Section IV, where
we formally introduce von Neumanns density matrix and show its rela-
tion to measurements of statistical averages. From the density matrix, a
fully quantum-mechanical distribution function, the so-called Wigner dis-
tribution is introduced. The Wigner function is particularly intriguing in-
sofar as its equation of motion is very close to the BTE. subject to the
constraints of the uncertainty principle. Approximate solutions to the
equation of motion and its connection to the results of Section III are
giv e n.

Analysis of semiconductor devices relies on the assumption that cur- S
rent flowk is by drift and diffusion. We show in Section III that the formula-
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tion of drift on a submicron scale is not at all obvious and that proper use
of diffusion currents is even less certain. Diffusion is related to the spatial
spreading of an ensemble of carriers with time, as the ensemble responds
to both applied drift forces and random forces such as are generated by
collisions. For examining transient diffusion processes, a Fokker-Plank
equation can be generated whose solution is the transistion probability for
a particle at Xo, to to transition to X, t. On the short time scale over which
relaxation processes occur, this equation does not reduce to the normal
diffusion equation. We review diffusion processes on a short time scale by
an ensemble Monte Carlo method, highlighting differences with the semi-
classical description.

In summary, semiconductor device physics separates into three over-
lapping categories, identified by a particular type of equation:

(1) the semiconductor mobility equation,
(2) the Boltzmann transport equation, and
(3) the quantum transport equation

We shall discuss the modeling of transport in nonlinear semiconductor de-
vices by solving, when available, or at least by examining each of these
equations.

II. THE SEMICONDUCTOR EQUATIONS

A. Introduction

It has long been recognized that a proper understanding of today's de-
vices requires detailed computer modeling of the space- and time-
dependent charge distribution within the device. Simple, two-terminal
configurations are usually represented by one-dimensional equations.'
but the more important designs require a full account of at least two
directions-one along the channel length and a stcond normal either to
the metal -semiconductor interface (MESFET, for example) or the

For one-dimensional devices. see Scharfetter and Gummel (al. This paper deals with
the large-signal simulation of a silicon Read diode oscillator. Simulation of a TRAPATT 0'.-

cillator is discussed b. DeLoach and Scharfetter (8b. For transferred electron devices. see
Shaw et al. 18,: For z'4o-dimensional simulations, see Barnes and Lomax [8d]. This paper
deals with finite-clement methods. Nonivothermal carrier flow in a two-dimensional bipolar
transistor under reactive circuit conditions is discussed by Turgeon and Navon (e The
phenomenon or avalanche breakdou n in MOSFETs i% discussed by Toyabe et a/. [8f] IYa-
maguchi et ! 18g] discuss the two-dimensional simulation of GaAs FET. See also Grubin
and McHugh (Sh].

I1 Mi
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oxide-semiconductor interface (MOSFET, for example). Many two-
dimensional computer codes have been developed for this purpose
(8a-8h]. Each of these codes involves obtaining self-consistent solutions
of

(i) Poisson's equation,

V2  / = -pIE, (4)

where .0 is the scalar potential and p the charge density;
(ii) the continuity equation,

div .J + (ap/t) = G - R, (5)

where Jc is the carrier current and the quantities on the right-hand side
represent the possibility of local generation (G)-recombination (R)
events; and

(iii) the "semiconductor equation,"

Jc = qNv - qD grad N, (6) 0

where q is the electric charge.

Equation (5) is for single-species transport, and each of these equations is
constrained by the external circuit.

As indicated in the introduction, the transport picture associated with 0
Eq. (6) is based on the approximation that the carrier velocity v responds
instantaneously to changes in electric field. For electrons:

v(F) - ,(F)F, (7)

where

F -grad b. (8)

Thus any spatial or temporal dependence in velocity arises because of
such dependencies on field. This extremely important assumption
breaks down at high frequencies (9]. In gallium arsenide, serious dis-
crepancies appear at 10 to 20 GHz. The significance of this becomes clear
with a simple example.

Consider solutions to Newton's equation of motion for a single carrier
subjected to instantaneous change in field and scattering centers:

in + eF. (9)
7

For cit = 0) = 0.

() = (-er/m1)F[l - exp(-t/r,)]. (10)
0O

0;



UR" ~ ~ ~ ~ ~ ~ wvwwyvvvv N19 "? LJJftr1 r,11Vr1~7 1W TW W 1Tvjru

204 H. L. Grubin. D. K. Ferry. G. J. latrate. and J. R. Barker

Thus, on a temporal scale, instantaneous response implies that the obser-
vation or measurement takes place over a time interval that is long com-
pared to the momentum relaxation time rp. For GaAs with scattering by
intravalley-central-valley phonons, i--, 0.3 x 10-12 sec, and for a mea-
surement over a time interval At = 3-,, the velocity is within 95% of the
steady-state v (t = c) value. Note that (3Tp)-' = 1100 GHz, but in a solid
containing a sufficiently high density of carriers (and here the solid must
also be large enough to contain a sufficient number of carriers), the
response of the devices is more closely related to the time required for the
collection of carriers, as represented by their distribution function, to
relax. For gallium arsenide, the distribution of carriers responds
sluggishly to changes in field, so well before the I l0O-GHz limit the
-instantaneous" mobility model breaks down. The question arises of just
how serious the breakdown is at lower frequencies. Although this ques-
tion is a subject of current research, the indication (see Section III) is that,
at least for gallium arsenide and frequencies below 20 GHz, qualitative
device behavior will not be altered by the nonlocal contributions.

For the remainder of this chapter, we shall discuss, through the use of
examples, the development of a numerical physics using the semicon-
ductor equations. Three examples will be discussed:

(i) one-dimensional analysis of GaAs two-terminal devices,
(ii) two-dimensional analysis of GaAs FETs, and

(iii) two-dimensional analysis of a silicon MOSFET.

The GaAs devices are chosen because they are the most thoroughly stud-
ied transferred-electron-effect devices and exhibit the most dramatic spa-
tial and temporal behavior. The family of GaAs devices is also among the
leading candidates for future VLSI applications. The silicon devices are
chosen because they are the most widely used and studied devices.

B. One-Dimensional Analysis of GaAs Two-Terminal Devices

1. Introduction

The standard one-dimensional simulation of GaAs two-terminal devices
seeks to replicate Gunn's original observations [10] and the subsequent
variations. Briefly, Gunn observed that when a GaAs sample fitted with
two contacts was subjected to a sufficiently high bias, spontaneous and
coherent microwave frequency current oscillations appeared (see Fig. ). i
The oscillations had specific characteristics in that the period was closely
related to the time it took the majority carrier (electrons) to transit
bet%%een the contracts. The explanation, as we know it today, is due to



6. Numerical Physics of Semiconductor Devices 205
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Fig. 1. (a) Schematic circuit for the appearance of Gunn oscillations. (b) One cycle of
current versus time for a GaAs device sustaining dipole oscillations. Nucleation and extinc-
tion occurred during the -spiked- portion of the oscillation. Dipole transit is associated with
the fiat portion of the oscillation.

Kroemer (II], who proposed that when the oscillations occured the elec-
tric field within the gallium arsenide sample became highly nonuniform.
This nonuniformity w ould manifest itself in the appearance of regions of
high electric field surrounded by regions of low electric field, as in Fig. 2.
and these high-field regions, often called domiains, would move toward
one end of the specimen. The oscillation was then a consequence of the
follok ing sequence of events. First. a domain would nucleate at one of the
contacts (the cathode). At this point the current would drop, as in Fig. i.
Then the domain would leave the cathode region and travel down the
sample toward the second contact (the anode). Here, the current would
be approximately constant. Finally. the domain would be extinguished at
(he anode contact and the current %%ould rise. The oscillation period T was

determined mainly b% the time it took the domain to travel between the
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Fig. 2. Sketch of moving high electric field domain associated with the oscillation of
Fig. 1.

cathode and anode contacts, and this was determined by the speed v of
the moving electrons. Thus T =Llv, where v is about 101 cm/sec and L
the length of the specimen. Note that for L -10-1 cm, T =10-9 sec and

Kroemer's explanation of Gunn's experiments required that GaAs sus-
tain a region of negative differential mobility, a fact demonstrated by
Hilsumn (121 in 1962. Here, by explicit calculation, it was shown that gal-
lium arsenide, through electron transfer, would exhibit negative differen- .
tial mobility, where for a range of increasing electric field, the electron
velocity decreases rather than increases (Fig. 3).

Typically, simulations (see Fig. 4) of the behavior of negative differen-
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Fig. .3. Drift %e.ct er'us electric fieid for GtA-;_ From BuItCh,-r12l. with permisifol
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pC

Distance

Fig. 4. Simulation of cathode-nucleated domain and subsequent transit-time oscillations.
The NDM element is part of the resistive circuit. and the computations display F(x,:) at suc-
cessive instants of time. From Shaw et al. (8c), with permission.

tial mobility devices involve breaking down Eqs. (5), (6), and Poisson's
equation and solving the following two sets of equations:

Jo(T= v(F) ( eNo W + E ax, .)

-D(F) a Ix ) e j + fa F(x. 0 1I)

Vq,' -t2RC-+ + Y' -+ . ()

where N()represents a spatially dependent donor density. Equation ( 12)
is a representative circuit equation (see e.g., ref. 80) with the device INi
parallel with a capacitor C1, both connected serially to an inductor Y. rc-
sistor R. and bias 4)B Also.

= f ~.i) dx(13)

and

= J,,)A.(14)

where A4 is the cross-sectional area.
[quation ( I I) Is the equation for total current density through the non-

I' *'~*~ -p A
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linear semiconductor. The first collection of terms is the conduction-
current contribution, the second and third contributions are the diffusion
and displacement contributions, respectively. In the preceding equations,
v(F) represents the velocity-field relation for the carrier and D(F) the
diffusion-field relation. Within the framework of the mobility model v(F)
is represented by Fig. 3 for GaAs and D(F) is given in Fig. 5.

Equation (II) is a partial differential equation rich in possibilities. Be-
fore discussing these, there are several points to be made with regard to
the placement and use of the diffusion coefficient. First, note that D is to
the left of the derivative. Within the framework of the Boltzmann trans-
port theory, this is not entirely correct. For those situations where the dis-
tribution function departs slightly from equilibrium, Stratton [13] has
demonstrated that the diffusion contribution should more generally ap-
pear as

a(Dn)/ax. (15)

For highly nonequilibrium situations where such methods as the displaced
Maxwellian are used, it is generally difficult to unequivocably identify a P
diffusivity. However, when it is defined, it usually emerges as a general-
ized Einstein relation. For multivalley semiconductors

D = I Z'. !! '(16)e F

as in Fig. 5. Here vi and T are, respectively, the carrier drift velocity of
the ith valley, T its electron temperature, and )h its fractional occupation.
There are difficulties with this definition and we refer to Cheung er at. [14]
for a more complete description.

400

"300

_>1
200

0 2 8

SLE C " ; LD'F p 3 2

Fig. 5. Diffusivity versus electric field used in GaAs simul3tions. From Butcher (21. with

permission of The Institute of Physics., !0
"10
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We also point out that Eq. (11) is written in "standard form" and re-
tains the feature of treating electrons as positively changed particles. As
long as we are treating one species of carrier, this does not present any real
difficulties, but when electron and hole conduction occurs, care must be
exercised. Among the difficulties to be aware of is the fact that the
velocity-field curve in Fig. 3 represents the magnitude of the drift veloc-
ity since electrons move in a direction opposite to that of the electric field.

2. Properties of Eq. (11)

a. Length Dependence. Equation (11) is a two-point boundary-value
problem and allows length-dependent effects to be studied. These effects
are pronounced in GaAs and have their basis in the following: If an osten-
sibly homogeneous GaAs specimen is biased into the NDM (negative dif-
ferential mobility) region, then ever-present space-charge fluctuations will
grow. These growing fluctuations will simultaneously propagate and the
amplitude of the disturbance in the simplest of cases [15] will be given by

G(x) = exp(-x/u), (17)

where

Noe dv/dF < 0. (18)

Significant gain will result in an instability when G z I or

NoL > -ev 1 (19)

For GaAs, NoL is typically - 101 /cm'.
From another viewpoint, high field-domain propagation in devices

greater than 50 Am is generally independent of the cathode and anode
region and can be analyzed as though the device had infinitely separate
boundaries. For N0 = 10"1/cm 3 and devices approximately 10 .in in

length high field domains may fill a large percentage of the devices and

proximity effects occur [8c].

b. Doping Variations. In the early stages of GaAs device fabrication, it
ka) rare to find a uniformly doped device. The effects of these nonunifor-

,nities were generally accounted for through assumed variations in No(x). RUN

For example, a significant drop in A'0 over a small distance was shown to

lead to local high field-domain nucleation with subsequent propagation
16]. In another situation. Kroemer established, by numerical simulation

[17]. that the presence of small statistical variations in N0 would generate

transient nonuniformities and prevent accumulation-layer propagation in

~.... - ... E .-iA : ~xxx.xrr.g\AYdPf D , 
' € € '
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long samples. In short devices. - 10 cm long. these fluctuations are not as
effective and accumulation-layer propagation is possible (8c].

c. Contact Effects. It has been established that the interface at the
two-terminal active region dominates the subsequent behavior of the de-
vice. These contact effects have been treated by doping variations, mobil-
ity variations, and phenomenological interfacial fields. In many cases,
through the combined use of simulations and experiments, one can deter-
mine whether doping variations or other contributions are responsible for
device behavior [8c]. The effects of contact fields may, for example, be
treated as boundary conditions to Eq. (11), where F(x =0, t) and F(x =
L. t) are specified [8c] or as a solution to a cathode differential equation,
e.g.,

M0 r) = AF) + 4E dF/dr at x =0, (20)
where j~is a phenomenological cathode current density. Our experience

Elem~0

0

510 15

Fig. 6. The s:eady-state r(F) curve and the simulated current densiity %ersus average
field relation fo. %.arious fixed values of carbode F,, For the simulation, the NDMf element is 0
in the circuit shc'An in the inset. For curve A. F, = 0. and the NDM element is quiet until the
bulk field cxceed the NDS1 threshold. An instability then forms. and t'orrelatively moderate
doping. nonuniformities may damp. The result is a quiet element with a current level some-
,A hit belo%4 the peak current density. The cathode fields for cuives B, and B, are indicated.
and here cathojie-nucleated domains result in distinct transit-time oscillations For curve C.
F, =24 kV/crn. and the ND%1 element is electricall% stable. Fromn ShaA et ,!, (8c] and re-
lated referen:e' therein.
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indicates that the important contact to model is the cathode, and our re-
sults (8c] for a fixed cathode model are summarized in Fig. 6. More ambi-
tious models are generated as the need arises,, as for example with Eq.
(20), which was generated to explain the unusual high-efficiency oscilla-
tions associated with lnP (18,19].

in spite of the care one might exercise in solving Eq. (II), transient
electrical instabilities require solutions to the circuit equations. For the
device in a circuit containing reactive elements [e.g. Eq. (12)], the subse-
quent oscillation (see Fig. 7) may bear no resemblance to a propagating
domain (18,19]. Another reason for insisting on the external circuit con-
straint is provided by the methods of characteristics and the field direction
technique (20,21]. These show that there are an infinite number of time-
independent solutions associated with a given value of J0. It is the circuit
constraint that picks out the correct distribution.

The preceding discussion has ignored the effects of generation -
recombination on transient behavior of propagating high field regions.
This is based on the assumption that instabilities develop on a time scale

300

JJ 0.2
Z ILL

3 1 49

0. 7. S ts up n n 2e 0n (j.m ) 10

(0) Wb

1.0w

j1 .p 0.4

2

Isiz. 7. Simulations using a time-dependent Cathode condition [Eq. 120)]. The NDNI ele-
, , , in a circuit (see Eq. 121). It is in parallel with a package capacitor and in series %ith
, 1l1du,:ilir. resistor, and dc source. (a) Simulation of current versus average field for a con.

current curve represented by the bold line. Superimposed on the bold line is the ttF)
, f:,. I r G;.-s. scaled to current and voltage. b) Electric field versus distance curves at

t' nt-, Of time. keyed to part (a). (c) Preinstability current versus voltage. Filled
dc ote computed points. From Sha . ,l. [8,K] and references therein.
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that is short compared to the generation-recombination process. A re-
cent modification of Eq. (11) was effected to include space- and time-
dependent impurity ionization contributions expected if carrier
generation -recombination becomes important (22].

C. Two-Dimensional Analysis of GaAs FETs

1. Introduction

Two-dimensional analyses of GaAs devices are almost exclusively de-
voted to simulations of three-terminal FETs in a variety of configurations.
The second dimension in these simulations is transverse to the principal
direction of current flow and its magnitude is often the determinant of
whether a propagating instability will occur [23]. The need for simulations
of two-dimensional problems is more generally accepted than that of
one-dimensional ones because of the unavailability of widespread intu-
itive equations.

The FET in its simplest form is a semiconductor slab with three termi-
nals. Two of these are usually low-resistance contacts, while the third is
either a Schottky contact or a p-n junction with an accompanying region
of charge depletion. For a unipolar conduction device, operation is based
on modulation of the depletion region, which is usually accomplished by
changes in the gate bias. Small and large signal gain are possible. Figure 8
is a sketch of the device and the connecting lumped elements.

The equations describing this device are Eq. (4), with

p -e(N(x,y,t) - No(x,y,r)] (21)

Fig. 8. Schematic representation O.f a Schotuk eate fieid-effeci transistor.
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and 
(22)

F(aYE) (5grad h -0x, and

and Eq. (5) with G - R = 0 and (3

j (X yj{)  -eNV(x~y.j)v(lF) 
+ eD grad N(x~y~t.(

Note that Eq. (5) requires point-bY-POint divergence-free total current

density div i(x,y,) = 0, (24)

where (
- i(x,yt) -- Je(x,y,() + C aF(x,y,1)/O. (25)

The boundary conditions to these equations necessarily approximate

the physical and electrical characteristics of the outer periphery of the

semiconductor structure. In most GaAs FET simulations, the exposed

surfaces are assumed to be ideal insulators and no current is permitted

normal to these boundaries. Along the free surfaces and in the limit of

zero permittivity for the space surrounding the device [24,8g],

A . grad had 0, (26)

where h is a unit vector normal to the free surface of the semiconductor.

The low-resistance source and drain contacts and the Schottky gate

contact are approximated by equipotential surfaces with a prespecified

charge density (24,8g]. For the calculations illustrated, the low-resistance

source and drain contacts are neutral and located sufficiently far from the

active region of the device that for the current levels involved they have

no influence on the electrical properties of the device. For the sample cal-

culations,
Ns = I No 

07)

and
NG = N, exp - [e4 8j1/kBTo) (28)

where bBi is the bult-if'" potential [253 and Ns, ND, and NG indicate the

source, drain, and gate, respectively.

To include circuit effects, the potentials on the contacts are needed.

Generally we set the source potential to zero [8hi while the gate potential

6, and drain potential -6t are determined by simultaneous solution of the

semiconductor equations and the circuit equations.

For the three-contact device of Fig. 8, the circuit equations are

_.1 
-

0 . _

IL0
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4 111(1) = I(I)Zc + O(), (30)

4G(t) = I(t)ZG + 'o0t), (30)

Is(t) = It(t) + I(), (32)

where 4 s is the source potential, 4c the gate potential. 0,) the drain poten-
tial. 01,c and 48 the drain and gate bias potentials, respectively, Is the
source current, IG gate current, ID drain current, ZG the gate impedance,
and ZD the drain impedance. The external circuit impedances are mod-
eled as lumped linear elements. The current passing across a contact is
the integral over the contact area of the component of current density
normal to the contact. For a device of dimension 1, in the z direction and a
contact extending over a region 1,

1(I) = 1. 1 h" i(x,y,t) dl'. (33)

When simulating a GaAs FET, the important features are shape, dimen-
sion, and doping profile. Typically, effects of semi-insulating substrates
may be examined by variations in No(x,y,t) [24,26], alloyed contacts may
be examined by increasing the doping level under the source and drain
regions, and semi-insulating gate regions [27] may also be examined. We
shall ignore these in the succeeding illustrations, concentrating instead on %
homogeneous doping profiles. Our intent is to illustrate the role of nu-
merical simulations in classifying GaAs FET behavior.

2. GaAs FET Classification

Numerical simulations and experiment [28] demonstrate that the GaAs
FET can be placed in one of two groups as determined by the ratio

gate vQltage at cutoff (4
K = (drain ve1tage at the onset of current (34)

saturation for zero gate voltage I
Devices with K > I sustain current oscillations, the origin of which lies

in the presence of negative differential mobility in the semiconductor.
Those with K -_ I are electrically stable. Devices %ith K > I are gener-
ally wider in the transverse dimension than those %kith K = I.

The electrical behavior associated with this classification is sum-
marized in Fig. 9. where we sketch the simulated current-voltage relation
for two GaAs FETs with a 10-.tm source-urain separation. For refer- .
ence. we have drawn the velocity-field relation for GaAs scaled to the
current and voltage parameters. The first point to note about these results
is that the current levels do not approach the peak current associated with
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Fig. 9. Drain current-drain voltage relation: (a) K > I and channel height I,, = 2.2 am:.

(b) K = I and 1, = 1.2 tam. Filled circles denote computed points: xs denote averages of

current during an oscillation. The solid curve is the GaAs '(F) relation scaled to current and

voltage. Reprinted with permission from Solid State Electron.. 23, H. L. Grubin. D. K.

Ferry. and K. R. Gleason. **Spontaneous Oscillations in Gallium Arsenide Field Effect

Transistors." Copyright 1980. Pergamon Press. Ltd.

GaAs. This is a consequence of the additional resistance supplied by the

gate region as well as the velocity limitation. The second point is that for

the wider-channel device an instability occurs. The instability is repre-
sented by the dashed /- V curves of Fig. 9a. The xs in the diagram repre-

sent average current and voltage values for the instability, and the pres-

ence of negative conductance is due to the dynamic propagating domain.
The filled circles in Fig. 9a represent stationary. time-dependent points,

and we note that where there is an instability it is surrounded by regions

of nonzero gate and drain bias for which there is no time-dependent
behavior. The third point is that for the wider-channel device, the norma-

lized current density at zero gate bias levels exceeds the sustaining cur-

rent [8c 1. which is the minimum current necessary for stable domain prop- I1
0-M
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agation in two-terminal devices. The sustaining current plays a similar ,,

role in three-terminal devices, and in these wider-channel devices, do-
main propagation occurs. For the narrower-channel device, the current is
below the sustaining current and no instability occurs. For this narrow de-
vice, and at sufficiently high drain bias levels, nonuniform domains form
during an initial transient where they absorb most of the voltage and force
a reduction in current level below the sustaining current. These results are
consistent with the thickness dependence previously discussed [23].

We illustrate the internal distributions of charge and current at three
points, 1, 2, and 3, of Fig. 9. Additional information is available in Grubin
and McHugh (8h,26] and Grubin et at. [28]. The internal distribution of
charge and current associated with the current and potential levels I and 2
of Fig. 9 are shown in Fig. 10 [8h]. Parts (a) and (b) show current-density S
streamlines through the device, with the length of each proportional to the
magnitude of the vector's current density at that point. The maximum
length of the individual x and y components before overlap is J, = Noevp,

where vp is the peak carrier velocity. We note that in both cases the cur-
rent density is greatest under the gate contact as required by current con-
tinuity. For the higher bias, the current density under the gate region is at
least as great as 4p and velocity limitation introduces carrier accumula-
tion. The density of charge particles in the FET is generally nonuniform
and parts (c) and (d) of Fig. 10 are a projection of this distribution as it re-
lates to the current-density profile of parts (a) and (b). We note that the
particle density increases in the downward direction. Part (a) shows a

N/N0

x GATE 1 _ ,x

S

.N.'NQ

G

~j j: ~.:..............

Fig. 10. The internal distribution of current and charge corresponding to the current and

'oltage le'els represented by numbers I and 2 of Fig. 9. Note that (he parlicle den " sur-

rounding the nonuniform distribution is uniformly distributed within the source-gat, region
..nd the gate -drain region Reprinted with permission from Solid Sl,t El-,'irmn. 21. H L.

6rubin and T. N1. M Hugh. "'Hot Electron lr,inporl I:ffc..t- in Field 1-1lfect rrnstors "I
Cop. righi 1978. Perarnoal Pre,,,. I.td I
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Fig. 11. Projection of the time-dependent particle density when an instability occurs.
The parameters at which this occurs are represented by the number 3 in Fig. 10. Reprinted

with permission from Solid State Electron.. 21, H. L. Grubin and T. M. McHugh. **Hot

Electron Transport Effects in Field Effect Transistors.~ Copyright 1978. Pergarmon Press.
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region of charge depletion directly under the gate contact. Part (b) shows 0
the formation of a weak stationary dipole layer under the gate contact.
Here the x component of electric field has reached the NDM threshold
field value at the drain edge of the gate contact.

We now consider the presence of an instability. We recall that for
two-terminal devices the instability is determined by the value of the elec-

tic field at the cathode boundary [8c] and that the threshold current den-
sit\ for the instability is anywhere between J. and J, where J, is the cur-

rent density associated with the high-field saturated drift velocity [8c]. In
contrast, for three-terminal devices, the initiation of a domain instabilit.

generally occurs under the gate contact and at a local value of current
density approximately equal to J. Figure II illustrates (he sequence of S

e~ents associated with an instability. Domain growth under the gate is ac-

companied by an increase in potential across the device. A correspondingp|
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decrease in current occurs throughout the device and circuit, as con-
strained by the dc load line. As the current decreases carriers with veloc-
ities below that of the peak velocity enter the accumulation layer, which
subsequently begins to detach. The domain speeds as it leaves the gate
region and settles into a value of current density somewhat in excess of
that associated with the saturated drift velocity of the electrons. Prior to
reaching the drain contact, the domain dynamics appear to be one-
dimensional.

D. Two-Dimensional Analysis of a Silicon MOSFET

Although a large body of gallium arsenide work is still regarded as re-
search and, consequently, only a relatively moderate amount of two-
dimensional simulations have appeared, this is not the case with silicon
devices. Here VLSI requirements introduce an urgency into the studies,
and MOS simulations, involving two types of carriers, are often used as
an alternative to experimental investigations.

For this case, the basic semiconductor equations are generalized so that
the charge density in Eq. (1) becomes

p = e[P(x,y,t) - N(x,y,t) + ND(x,y,t) - NA(x,y,t)]. (35)

The continuity equation is generalized so that

div J. - e a[N(x,y,t) - ND(x,y,t)]/at = G - R, (36a)

div J. + e a[P(x,yt) - N.(x,y,)]1/dt = -(G - R), (36b)

and the current-density equation is

1, = - eN(x.y,)v, + eD. grad N. (37a)

Jp = + eP(x.y,t)v, - eD, grad P. (37b)

The boundary conditions, device shape, and material parameters spec-
ify the problems to be studied. Figures 12-14 summarize the results of a
recent calculation [29] designed to show the dependence of the internal
charge distribution on the impurity concentration of an MOS transistor.
The device configuration is shown in Fig. 12. where the line segment BE

represents the semiconductor-oxide interface. Within the oxide region,

V 2 0, (38)

and at the interface. I
60" (39)o%. ilI
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A SOURCE OXIDE DRAIN

Fig. 12. Geometry for the MOSFET simulation. The regions under AB and EF arc gener-
ally heavily doped n** regions. From Selberherret at. [29]. with permission.@ 1980 IEEE.

As in the MESFET calculation, the carrier densities at the source and
drain contacts are set equal to the doping concentration. No current is
permitted to flow across the interface BE, the bulk control HG, or the ex-
posed surfaces AH and FG.

The doping profiles to which the mobile electrons respond are shown in

/V ,Y

E! 7. 11

v- E16

K EE15Q 7

7- 0 0

-' 0*
a '0

(a) (b)
Fig. 13. Do'ping coflcentraion of slcnMOSFET. Axes are lengths in microns. From

Seltlrherr C! C '29]. with permissi.n.©D 1981) IEEE.
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Fig. 14. Electron concentration of silicon MOSFET under strong inversion. Axes are
lengths in microns. From Selberherr et al. [29], with permission.@ 1980 IEEE.

Fig. 13. In Fig. 13a, the p-type dopant is uniformly 101s/cm 3 , and in Fig.
13b, it increases at the oxide interface to approximately 5 x 10, 6/cm 3 .
The surtace concentration of the source and drain regions is 5 x 1019/cM3

and the depth of the p-n junction under the source and drain is approxi-
mately 3000 A. Figure 14a shows the electron distribution for the first de-
vice under strong inversion. The surface concentration in the channel is
high. Figure 14b shows the ion-implanted device (Fig. 13b) again under
strong inversion. As expected, the surface concentration has decreased.

Ill. THE BOLTZMANN TRANSPORT EQUATION

A. Introduction

In general. the free carriers in a semiconductor gain energy from the
electric field. This energy must be relaxed to the lattice through 0
electron -phonon interactions. For vanishingly small values of the electric
field, the energy gained from the field is negligible in comparison with the
mean energy of the carriers, whether this latter quantity is represented by
a thermal energy or by the Fermi energy in degenerate semiconductors.

I I
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For larger values of the electric field, the average energy of the carriers is
increased by the field, and the carriers are said to be "hot.- Because the
average energy of the carriers increases in the field, the net rate of phonon
emission must also increase to yield the energy loss.

The last factor of increased emission of phonons to balance the energy
gain from the field is a consequence of detailed balance. Consider a non-
degenerate distribution characterized by an electron temperature T,.

Phonon emission and absorption processes connect states at energy E
with those at E + hojo. The rate of absorption of phonons out of the states
at E is given by

AN, exp(- E/kT.). (40)

where N, is the Bose-Einstein occupation factor of the phonons of wave-
length q and k5 Boltzmann's constant; the rate of emission from the states
at E + Acuo is given by

A(l + N.) exp[-(E + h/ao)/kBT]. (41)

Now (I + N.) = N. exp(heo,/kaTo), where To is the lattice temperature,
so that emission and absorption processes establish a detailed balance
when Te = To. If additional energy is supplied to the electron gas by an
external electric field, then the gain in average energy is characterized by
a rise in T, and the emission processes increase over the absorption
mainly by the factor exp{[hwo(l - TJI/T /kBTo1, provided that the distri-
bution function remains Maxwellian. The amount of rise in electron tem-
perature T, is governed by the energy gains and losses of the electron gas,
and a detailed balance is established when the average rate of energy loss
to the lattice -(dE/dt) equals the rate of energy gain from the electric
field. or

etF' = -(dE/dt). (42)

The problem of evaluating Eq. (42) often reduces to one of determining _
the carrier-distribution function. At very low electric fields, the distribu-
tion function can be described as merely a small drift term superimposed
on the thermal distribution, as

f(ETo) = fo(E.To) + f, , f, << fo. (43)

where fo(E.To) is the Maxwell-Boltzmann (or Fermi-Dirac) distribution
at the lattice temperature To. When the electric field becomes sufficiently
large, however, that the procedure of (43) can no longer be used, we are
said to be in a high-field regime and hot-electron (or hole) effects must be
considered (9]. The overriding theoretical concern in high-field transport
is one of discerning the form that the distribution function takes in the
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presence of the electric field. In semiclassical transport, this distribution
function is given as a solution to the Boltzmann transport equation (BTE).
Because of the very complicated nature of the BTE-the fact that it is a
nonlinear, integrodifferential equation-it is usually not possible to solve
it analytically and several possible assumptions can be made. This aspect
was recognized early, and much work was done in the mid-1930s by sev-
eral Russian authors [30,31]. Since then a considerable amount of work
has followed, both theoretical and experimental. One reason for this lies
in the manner in which investigations of the high-field transport yield in-
formation on the details of the electron-phonon interaction and the in-
teraction of the carriers with themselves and with impurities. Another
major reason is the role played by hot-electron behavior in the operation
of electron devices.

In spite of the many studies of hot-electron (and hot hole) behavior, the
central problem underlying the entire area remains that of trying to under-
stand the manner in which the distribution function of the electrons is mod-
ified by the presence of the electric field. This is true whether we are
dealing with a bulk material or the current response in a device. It is also a
formidable experimental problem (32]. In general, the Boltzmann trans-
port equation can be expressed in its most general form as

S+ v.- - eF- - fp'[f(p'W(p',p) - f(pW(p,p')], (44)

where f(r,p,t) is the carrier-distribution function. Generally for the
steady-state response, the first two terms on the left are ignored and the
distribution is a function of the carrier pseudomomentum p = hk and the
energy. It is important to note that the Boltzmann transport equation as-
sumes that the collisions are instantaneous in both space and time and
that the field and scattering are different perturbations. In spatially
varying problems, the addition of the position vector r brings about an ef-
fective lowering of the symmetry of the problem and complicates the solu-
tion of the Boltzmann equation (or an equivalent formulation). One can
usefully classify the various phenomena or solutions upon the level of this
svmmetry. Where hot-carrier behavior is not considered, a single dimen-
sion, the electron energy E, is sufficient. If an axis of rotational symmetry
exists for the hot-electron problem, perhaps along the electric field direc-
tion, then two variables. p (or E) and 6, are all that is required. In many
cases the problem is more complicated, however. But, in some circum-
stances, an analytical form can be assumed for the distribution function
and if this form depends only on a small number of parameters, then the
zero-dimensional case results. In this latter case. simple equations for the
evaluation of these parameters can be found, usually from moments of the
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BTE (33]. In other cases, no approximations can be made, and detailed
numerical techniques must be used. In modern transport theory, approxi-
mation techniques based on Legendre expansions forf(p,t) no longer find
much usage. Modern computers allow relatively rapid solution of detailed
equations, and so the two approaches just discussed receive extensive
usage. Which of the two methods is to be preferred depends on the rate of
intercarrier energy exchange, discussed by Hearn (34].

B. Displaced Maxwelllan Equation

Fr6hlich [35] first pointed out that the isotropic part of the carrier-
distribution function is Maxwellian provided that the carrier concentra-
tion exceeds a certain critical concentration; i.e., provided that the rate of
intercarrier energy exchange is sufficiently large. Under conditions for
which the anisotropic terms can be taken as small, Fr6hlich and Paranjape
(36] pointed out that a displaced Maxwellian distribution

f(E) = A exp[- (E - vd p)/kBT], (45)

containing the electron temperature T, and drift velocity Vd as parameters,
could be utilized. This is then the hot-electron distribution in the approxi-
mation for which the critical carrier concentration is exceeded, and the
parameters are then determined from balance equations, which, in turn,
are obtained from the Boltzmann equation. Following the approach of
Price [37], Eq. (44) is multiplied by any function 6(p) and integrated over
p. For electrons within a single valley, this gives

6() + -r (6) - eF- ± + (f dp' [6(p') - (6(p)]W(p,p')).dr ap *
(46)

The last term on the right arises from an interchange of variables involved
in the double integration. The terms on the left-hand side vanish for the
homogenous steady state. For 4) equal to p, the first term on the right is
just the force F and (46) is the momentum-balance equation. For 0) equal
to the energy E. the first term on the right is vd • F and (46) is the 0
energy-balance equation. In particular, the factor within the angle
brackets in the last term on the right serves to define the average rate of
energy loss to the lattice by collisions[ (~ii~i~.,1 f dp [E(p) - E(p)IW(p,p') (47)0
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and the average rate of momentum loss due to collisions

dpj I f dp [p' - p]W(p,p'). (48)

Although Eq. (46) has been developed for a single valley, the procedure is
readily extended to sets of nonequivalent valleys. This is done in Ap-
pendix A.

As an example, consider a material such as indium arsenide, where the
scattering in the central valley is dominated by the polar optical phonon.
In this case, the energy-balance equation becomes

evdF = A,(exp(y - x) - i]x"' exp(x/2)Ko(x/2), (49)

where A, = eF4(2o/irm*)hh/[exp(y) - 1], x = tiwo/kBT., Y =
hwaofkeTo, and F4 is an effective electric field describing the coupling
between the electrons and the phonons. Similarly, the momentum-
balance equation becomes

-eF = (Am*vd/3hao){[exp(y - x) + l]Kt(x/2)
+ [exp(y - x) - l]Ko(x2)}x312 exp(x/2)
+ 8vd( 2 7rm*kT,)"2 (3 7rl) -' (50)

where the last term on the right takes into account the momentum loss to
the elastic scattering by acoustic modes. Now, Eqs. (49) and (50) can be
solved simultaneously to yield Te for a given electric field F, and then this
result can be used in Eq. (46) to find v4 and, hence, ix. It should be pointed
out that this is an exceedingly simplified model, and factors such as inter-
valley transfer and band nonparabolicity should be considered. However,
the results given here are useful as an illustrative example of the applica-
tion of the displaced Maxwellian technique.

The accuracy of the balance equations obtained from (46) ranges, in its
applications to solving transport problems, from very good to exceedingly
poor, the latter in cases in which the preceding assumptions are just not
valid. Perhaps the most easily violated condition is the critical carrier con-
centration required. In the cases in which the balance equations are good, S
one can use them to infer energy and momentum relaxation times as

- ere = d(E)/d(%d F). (51)

- e-, = d(p)/dF. (52)

It should be pointed out that although these definitions appear in the
balance equations, their validity goes beyond the displaced Maxwellian.
Equations (47) and (48) can be averaged over any distribution f(E) to de-
fine effective energy and momentum relaxation times, but the connection

0
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of this to the electric field, as in Eqs. (5 1) and (52), must be used carefully.
Since these times are based on the balance equations, the validity of their
definitions is inherently tied into the results, and although any distribution
function can be used, it must be done judiciously. One finds from these
considerations of the relaxation times that the energy relaxation time 7r is
considerably longer than the momentum relaxation time 7, so that the
drift velocity responds to a change in F faster than the electron tempera-
ture responds. This can lead to overshoot effects in the velocity, in which
vd rises to a value corresponding to an electron temperature at the starting
time just before the change in F, then changes further as the temperature
and distribution relax to the new temperature [3,38,39]. This time-
dependent behavior and the steady-state ac cases can be treated by using
the time-dependent form of (46), using, for example, a large, steady, dc Fo
and a small, sinusoidal, ac field F, superimposed upon it. In this case, one
finds that the ac mobility includes terms like (1 + ihwn) and (I + iWnc), re-
flecting the two time scales in the problem [40]. More complicated time
variations have been examined by Butcher and Hearn [4], and spatial
variations of the displaced Maxwellian have been considered by Bosch
and Thim [41]. We shall expand considerably on these discussions, with
particular attention paid to device simulation.

C. Semlempirical Transport Equation Method

In many cases, the BTE cannot be solved utilizing a displaced Maxwel-
lian, but a set of balance equations is desirable for simplicity of applica-
tion, especially in device modeling. An approach has built up that
achieves this simplified goal and is called (by us) the semiempirical trans-
port equation 'iethod (SETEM). Equation (46) can be rewritten as

8(6) (4?)
S+ . (v) = -(eF" VP6) - -, (53a)

where 1/7. is an effective relaxation rate for (6). Of course, this quantity
can be calculated directly from the collision integrals (47) and (48) if the
distribution function is known. The approach of the SETEM is similar to
that of the semiempirical tight-binding method in band-structure calcula-
tions, where the simple approach is used as an interpolation method.
Relatively exact calculations of v(F.t) and (ElF.t)) can be made using the
numerical techniques to be discussed. Then the set of equations given by
(53) for different functions 6(p) can be fit to the exact calculations by
using ,. 7E. . . . as adjustable parameters that are functions of the field
F. Once the relaxation times are known, the balance equations (53) can be

0
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used for device modeling (see e.g. Shur [42), and we shall illustrate this
next.

Carnez et at (43] applied (he SETEM to the modeling of submicron
FETs. They obtained simultaneous solution of Poisson's equation. the
equation of continuity, and the time-dependent, but spatially indepen-
dent, momentum and energy equations. For the latter, the SETEM
equations are

d[mn(E)v]/dI = -eF - [m*(E)v/TP,(E)], (53b)

dE/di = - eFv - [(E - EO)/TE(E)], (53c)

where 7,(E-) and -rE(E) were obtained from the steady-state values of
velocity and energy

--r,,(E) = m*(E)(v(E))/e(F), (53d)

- gE) =?- Elle(F)Wf(E). (53c)

Here (F) relates F to energy, as in Eq. (53g). For a two-valley semicon-
ductor,

M*(E) = [I - N,(F)/NO]m*' + [N 5(F)/NOmfl] (53f)

and

E(F) =Ec(F)[l N.(F)/N0 ] + [E3(F)N,(F)/N0 ]. (53g)

0 i

Fig. 15. Steady-staie drift velocity versus electric field: (), 10" m'. --- .
3 x K0'cm-3 . From Carneze i t (4) with permission.
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Fig. 16. Steady-state mean energy versus electric field; (-)Nd 10~ CM- 3
. .(.-.)Nd

3 x 10" cm-3. From Camez et aL (43). with permission.

Here NJ(F). Ec(F), and E.(F) and the brackets ()denote steady-state
relations.

Equations (53b)-(S3g) contain the essential philosophy of SETEM as
currently used; namely, nonequilibrium conditions can be obtained en-
tirely from the steady-state parameters. The calculations require
steady-state values for the field dependence of energy, velocity, and ef-
fective mass, which may be obtained from Monte Carlo method (see, e.g.,
Littlejohn et at. [44]). An illustration of this is given in Figs. 15 -17.

o020

G 0,

0 10 20

Fig. 17. Seadv-staie effective mass ratio versu% clecinc field: -. \.10" cm-1.
x ' 10'. c M.
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An important question concerning the use of Eqs. (53b)-(53g) is: How
good is the approximation? Clearly, as used by Carnez et al. [43] and
others, only two relaxation mechanisms, energy and momentum, are con-
sidered. An extremely important relaxation mechanism is intervalley car-
rier relaxation. While this, in principle, can be accounted for in a general
SETEM treatment, this has not been addressed by Eqs. (53b)-(53g). In
addition, all spatial relaxation has been ignored. In submicron devices
where the fields are highly nonuniform, spatial relaxation may be the
dominant transient contribution. Should this occur, Eqs. (53b)-(53g)
would be inadequate. Nevertheless, as applied by Carnez et al.. surpris-
ingly good results can be obtained (see Figs. 18 and 19).

D. Numerical Techniques

The truncation of the expansion for the distribution function to the first
two terms, as is done in the displaced Maxwellian, is, in general, not a
valid approach. It usually is justified only in the rare cases that eFI is small i,.p
compared with the energy range over whichfo varies appreciably, where I
is a composite mean free path. The rapid variation off. in the region about
the optical phonon energy limits this truncation to small values of the field
or to cases of very rapid energy exchange via carrier-carrier scattering.
The problem is to derive the distribution funtction for free electrons in a .

semiconductor from a knowledge of the various scattering processes and
the applied fields. Although it is possible to justify various numerical solu-
tions of the electron-transport problem without specific reference to the

8I

22

6 22
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0 2 4.10

Fig. 18. Dnft velocity versus time when applying an electric field pulse: - analytic for-
mulation. UMonte Carlo calculations. From Carnez er (i. [43]. with permission.
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Fig. 19. Drift velocity versus time when applying an electric field pulse. (-) SETEM for-

mulation. ( •) Monte Carlo calculations. From Camez et al. (43], with permission.

integrodifferential form of the Boltzmann equation, it is more illustrative
to take this as a starting point and, thus, to clarify the basic properties of
the numerical methods. For a spatially uniform electron system in an ex-

ternal field F, the time-dependent Boltzmann equation is given from (44)

- eF" a + X(k) f(k,t) = W(k',k)f(k',) dk', (54)

where p = hk and X(k) is the total out-scattering rate (X = l/r) and repre-
sents the second term on the right-hand side of (44). The term on the
right-hand side of (54) represents just the in-scattering contributions.
However, the definitions in X(k) are relatively incomplete since part, or
all, of the X(k)f(k,t) term could be absorbed into the term on the right. The
precise definition of X(k) and, consequently, of W(k.k') will usually de-
pend on the particular calculation to be undertaken, but the formal theor%
is independent of these considerations. We shall therefore proceed as Just
defined.

The inverse of the differential operator (54) is just an integral opc,;,,!
Budd [45] points out that the integration is a generalizahor , Ih.
Chambers (46] path integral, and the result can be %krmtecn a,,

. ds A f- k'.t '.k

x exp - Vhk -€ t!
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The transformation of the BTE into this form, when supplemented by nu-
merical techniques on a grid of points in k space, as may be peformed on
modern digital computers. provides an extremely powerful technique for
solving the Boltzmann equation. it is demonstrated, quite elegantly, by
Rees (47,48] that an iterative approach can be utilized to great advantage.
Moreover, he also points out that the iterative solution is a surrogate for
the time evolution off(kr). a point we shall discuss further.

An important technical innovation introduced by Rees (47] is the con-
cept of self-scattering, a fictitious scattering process, which does not alter
the physics, but allows a great simplification of the mathematical detail.
To each side of (55) we add a term of the form

r(k) 8(k - k'). (56)

In particular, the simplification arises if we define this term as

r'(k) = r - k(k), (57)

with r sufficiently large that ['(k) > 0 for all k, although adequate results
can often still be obtained if this condition is relaxed. Then, (55) becomes

f(k,t) =f ds f dk'f(k',t - s)W* (k',k + -- )exp(-Is), (58)

where

W*(k',k) = W(k',k) + F(k) 8(k - k'). (59)

The iteration presented by Rees [47,48] consists of two distinct parts, or
steps. The first part of each iteration is represented in the time domain by
the evaluation of an intermediate function g.(k,t) from the nth iterate
f,(k.t) according to

g"(k.t) =f dk'fk,(.)W*(kk). (60)

The second part of the iteration generates the (n + l)st iteratef,+1 (k.t) as
the causal solution of (44). recognizing that g-(k,t) can be the right-hand
side and f(k is replaced by f,,.(k.r). This causal solution is then

,l = s (k + r - s exp(- rs). (61)

Physicalk. this last integral represents integration along the trajectory
(the path integral) and the exponential factor is just the probability that no
scauering has occurred during the traverse of the path. The appeal to the
stabllit of the stead% state gives the result that the final distribution func-

.- N
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tion arises from

flk) = lim fn+,(k,), (62)

and since the scattering factors and path variables shape Jfk), the initial
guess for f(k) is not critical. There is the further useful result that with
'(k) defined as in (57),

lim f.(k) = f(k,n/l). (63)
N-.a

Rees [47], in arriving at this result, shows that each iteration is equivalent
to a time step of I/F. However, whatever value of r is chosen, the re- 0
suiting steady state f(k) is the same. The time-development capability,
however, allows a description of the approach to equilibrium from any
given initial function to be ascertained, and by varying the field between
iterations, the time-dependent response can be found.

It can be readily observed that the iterative approach represents a chain 0
of integrations, representing alternate applications of a path integral and a
scattering integral. The entire chain operates on an initial trial function.
This chain suggests an alternative approach to the solution of (54), the
Monte Carlo evaluation of the integrals. In this latter case, a two-step
iteration is also followed. The first step is a path traversal, terminated at a
time t selected on a random value of the function exp(- rt). The second
step involves scattering from the state resulting at the end of this traverse
to a new state. The new state is governed by the type of scattering process
used and this latter quantity is randomly selected from those present.
That is, a typical electron is considered at i = 0 to be accelerated to t,
where t, = In(R)/r and R, is a random number. At t,, the electron has
been accelerated to a state (k,,E,). At this point, the relative probability of
the ith scattering event is Xi(E,)/F, where X, + X2 + • ' ' + X, = 17, in-
cluding self-scattering. The particular scattering event is selected by a
second random number R. as the kth process when X, + + ,kk-1 <
FR., < x, + • -, + Xk. The properties of this scattering event
are then used to determine the final state (k-,.E 2), which is used as the new
r = 0 state and the process repeated. If the states (k,,E,) are tabulated in a
k-space grid. then their distribution becomes a representation off(k). An
estimator for the physical variable 6. such as the velocity, is generated as
-6(k,)/(number of scatterings). where the sum runs over all of the scat-

terings. The validity of such an average lies in the ergodicity of the physi-
cal process. providing that a sufficiently large number of iterations has
been used. The basic Monte Carlo technique was first put forward by
Kurosawa (49]. but its full capabilities were not evident until the introduc-

0
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tion of self-scattering by Boardman ei al. [50]. The application of Monte
Carlo to time-dependent phenomena is restricted to cases where 0 << r,
because of the need to establish equilibrium among the states.

Comparison of Techniques

In Fig. 20, a velocity-field curve is shown for electrons in the central
valley of gallium nitride as found from two methods of calculation. The
curve calculated from a Monte Carlo technique by Littlejohn et al. (53] is
contrasted with that calculated by a displaced Maxwellian by Ferry (54].
The difference between the two lies in the anisotropy introduced by the
polar optical phonon scattering. For low carrier concentrations, this an-
isotropy, due to the small angle of scattering in this situation, leads to
streaming of the carriers. The streaming effect is generated by a spike in k
space directed along the electric field. To model this adequately by a
Legendre expansion would require an exceedingly large number of terms
to be retained. At high densities, however, carrier-carrier scattering will
cause the spike to be dissipated. Which of the two curves is correct de-
pends on the degree to which the carrier-carrier interaction is significant
in the development of the distribution function.

In Fig. 21, the opposite case is shown. Here the velocity-field curve of
Si at N. = 1017 cm-3 is shown. In this case, the nonpolar optical phonons
are relatively isotropic scatterers and carrier-carrier scattering is large.
Here, the two methods of calculation, Monte Carlo and drifted Maxwel-

r -

I

6I I I

0 " 2c,: 3n

E FIEO .

Fig. 20. The dr:': %elocity in GaN at 300 K as calculated b%- a Monte Carlo technique [511
I- i-d by a disp!-:ed lax%&ellian (52 1---). The differences are discussed in the text.
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HRg. 21. 'Me drift velocity in Si at 300 K as calculated by a Monte Carlo technique (55)

(-) and by a displaced Maxwellian ( --- ).

lian, agree quite well in this high-field region. We might also expect the
two methods to agree well for GaAs, if the carrier concentration is high,
such as 1011 cm - 3, and the scattering is dominated by the intervalley
phonons. This is shown in Fig. 22 for the transient velocity in GaAs at 10
kV/cm. This figure also shows the importance of having r >> w.m,., as
previously mentioned, where Om is the highest-frequency component in
the transient response.

The explicit representation of the actual distribution function, such as
occurs in the iterative solution and to a lesser extent in the Monte Carlo
approach. has natural advantages. Effects that are nonlinear inf(E), such
as carrier-carrier scattering and degeneracy off(E), can readily be incor-
porated into the calculations. The details of the scattering are fully tied up
in the terms W*(k.k') and F(k), so no conceptual difficulty arises in incor-

porating nonphonon scattering events such as impact ionization [51], op-
tical carrier generation [52). or even cyclotron-resonance-type transi-
tions.

E. Velocity Transients _'

In traditional semiclassical approaches to solutions of the BTE, it is as-
sumed that the response of the carrier to the applied force is simultaneous
with the applied force. even though the system may undergo subsequent
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Fig. 22. Comparison of the transient dynamic response of electrons in GaAs for a field of
10 kV/cm at 300 K. The solid curve is the result of a displaced Maxwellian [59). while the
data curves labeled a. b. and c are Monte Carlo results for r = I X 1014 . 3 x 1014. and 5 x
10" respectively (55].

relaxation. However. on the short time scale of the velocity transient, a
truly causal theory introduces memory effects that lead to convolution
integrals in the transport coefficients (55-62].

In this section, we shall provide the detailed derivations of this memory
or retardation. showing in complete form both the momentum and
energy-balance equations for a drifted Maxwellian approach. The
energy-balance equation involves retardation of the collisional energy
relaxation by the nonzero collision duration only. However, the coill-
sional momentum relaxation is retarded. not only by this effect, but also
through the normal memory effect. In order to allow completeness. we
shall also include here the finite collision duration discussed in the next
section.

The Boltzmann transport equation is valid in the weak coupling limit in
which the collisions can be treated independently and perturbatively. It
can readily be d eveloped from more exact density matrix equations.

in w.hich the field contribution also appears as a differential superoperator

L~. p
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in the momentum representation [55]. In the case where the field is large
and/or the collision duration is significant, the collision integral in the
BTE generalizes to a form involving the replacement of the energy- O
conserving 8 function factors in the Golden Rule transition rates by a path
integral over the time t into a collision (63-65], and the BTE becomes

0f- eF- Vf d(' S(pp't')f(p ,r - t')

] °
- S(p',p,t'f(p,t - t*) (64)

p.

The right-hand side of (64) is defined as the collision integral, and the de-
tails of the transition terms take the form, for inelastic phonon scattering,
of 0

S(p,p';t,t°) = - Re{W(p,p') exp (t-r-

[( 5x 6s..,,exp -i " P/(p,p;t) ,(5

where [

f3(p,p';t") = E(pit")] - E[p'(t")] + -qfiwq (66)

and the term in exp(- t/rr) weights the time variation with the lifetime of
the quasi-practical states and W(p,p') in 27r/ii times the square of the per-
turbing matrix element. The momenta p,p' are explicit functions of the re-
tarded time t on the right-hand side through the relationships.

p = p - f eF(r") dt", (67a)

W - . eF(t") dr". (67b)

The two exponential factors in Eq. (65) are related to the joint spectral
density function, which reduces to an energy-conserving 5 function in the
instantaneous collision, low-field limit. Here E(p) is the quasi-panicle re-
normalized electron energy, fr/r the joint linewidth due to collisional
broadening of the initial and final states, and -q takes the values + I. - I for
phonon emission or absorption. respectively, in the in-scattering term.
For the out-scattering term, the roles of p.p' are interchanged, although
this does not upset detailed balance in the equilibrium sense.

In smiall semiconductor devices, where the dimensional scale is of the
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order of 1.0 Im or less. the carrier concentration will. in general, be rela-
tively high.4 Under these conditions, the anisotropic terms in the distribu-
tion function are small and a parameterized distribution function, the dis-
placed Maxwellian, can be utilized. With this assumption, a hierarchy of
moment equations can be generated from the BTE. from which the
various parameters can be determined. A normal expansion of the dis-
placed Maxwellian appears as Eq. (45), but for a form required for the
memory functions, we specify f(E) by the ansatz

f(E) c f d7 [8(t - 7) - vt - ) p  f.(E,), (68)

where the two derivatives are required, respectively, to preserve the di-
mensionality and to bring 3 (= lkeT.) into the second expression in
the bracket. In the limit of long times Eq. (68) reduces to (45). Here
fo = exp(-PeE).

We now take the Laplace transform of(64) as follows: assuming a single
spherical isotropic conduction band,

sf(p,s) - f(p,O) - eF- Vp f(ps)
2 , (W(p,p')f(p',s) - f(p,s)W(p',p)}G(s) (69)

where

G(s) = Re exp(-st) exp i(E - E' ± covo)

+ , eF" (p - p')I t dt (70)

2m*h rJ

and the time dependence in (67) has been explicitly expanded. The second
exponential in the integral is a very rapidly oscillating function and we can
generate a first-order estimate by an asymptotic approximation to G(s).
We do this within the spirit of the method of stationary phase. The first
exponential can be brought outside the integral and evaluated at 7, the
time for which the phase in the second exponential is zero. We expect
then that s7C will be small, the more so because we generally must take the
limiting case of s small to assure that the collisions are complete. Under
these assumptions, we can make the approximation

exp(-s7,) = I - S7, = (I + sr') - '. (71)

The remaining integral is just the field-shifted and -broadened joint spec-

See, for example the arguments on size scaling in Hoeneisen and Mead [66).
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tra density function (63-65], which, in the limit of small field and large 7r,

reduces to ir 8(E - E' ± he,), the normal form. While the exact form of
the integral is not easily analyzed in physical terms, a simple perturbation
expansion allows us to model all but the irrelevant fast oscillatory behav-
ior by approximations (67].

Using these forms for the function G(s), we can rewrite (69) as

sf(p,s) - f(p,0) - eF- V, f(p,s)
= I (W(p,p)f(p',s) - W(p',p)f(p,s)] p) + (72)

We can now multiply by an arbitrary function O(p) and eventually sum
over all final states p. Then a general approach, such as in Appendix A for
developing moment equations, can be followed using the transformed ver- -
sion of Eq. (68). These balance equations are developed in the trans-
formed domain, however, and must be inverted to obtain the time
response. The results are: for the energy equation,

a 3l C /-T\-- exp ,) (F,( - r)) dr, (73)

where we have recognized that ()) = 3kBTe/2 when 4o = E, and E(t) is
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Fig. 23. Transient dynamic response of camiers in silicon at 300 K. It is assumed the car-
riers see a homogeneous field of 20 kV/cm that is applied at t = 0. Curve a shows the
response neglecting the shon-time effects but including the weakening of the collision in the
high field. Curve b includes the effects of retardation due to the nonzero collision duration
alone. Curve c includes the memor% effects alone. Curve d includes all effects according to
Eqs t731 and (74).
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now defined by (47): and for the momentum-balance equation.

m--t" = -eF - vd(t - 7) (t.(i - T')) xp( di di. (74)ex-
"re fo

If 7, -- 0 and Vd is slowly varying, then (74) reduces to the normal form
(46) and r. is recognized as the rate of momentum relaxation (48). The
various convolutions introduce a significant temporal retardation in the
rate of momentum relaxation. Although Eqs. (73) and (74) include signifi-
cant corrections on a short time scale, there is reason to believe that fur-
ther corrections still need to be included.

In Fig. 23, the transient response of the electrons in Si to a steady
homogeneous field of 20 kV/cm is shown. Although the retardation due to
the nonzero collision duration acts to speed up the response, the domi-
nant factor is the memory effect of t. and Vd. The collisional retardation
speeds up the process, however, primarily because of the effect of
slowing down changes in the effective energy via collisional relaxation.

F. Device Simulation from the Boltzmann Transport Equation

Based on the preceding discussion, it is clear that mobility models will
have limited usefulness in submicron and high-frequency devices. The ex-
tent to which this is true is material-dependent and is most likely to be re-
vealed by device simulations. Complete one- and two-dimensional simu-
lations involving solutions of the BTE are only sparsely available. Rather,
bits of the problem are treated. Here Monte Carlo, iteration, and moment
methods are used and in the following we shall illustrate some results,
drawing on GaAs, as the nonlocal spatial and temporal contributions are
dramatically enhanced by the transferred electron effect. Our approach
will emphasize the displaced Maxwellian moment equations. primarily
because of intuitive advantages and for the relative ease with which 4
space-charge contributors can be handled.

The device-moment equations [68] for a displaced Maxwellian of the
form given by Eq. (A-I), are

(aN\/at) + V. (vN) = (aNi/at)c. (75)

(aP,/at) + V- (v1P,) = -eNF - V(:\IkBTI) + (aPi/at)c, (76)

(atV,/aat) + V- (vi W1) = -eNivi - F - V- (viN k, )

-V qj + (a wia[),. . (77)

where the subscripts identify a particular valley. Here

Pi= iNiv. (78)
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WI= INkBTs + ImnN1v?, (79)

m is the effective mass of electrons in the ith valley, and T, is the electron
temperature of the ith valley, and W, is regarded as the average total
kinetic energy density.

These equations have simple physical interpretations. For Eq. (75), the
increase of electron density plus the outflow of electrons equals the in-
crease of density due to collisions. For Eq. (76), the left-hand side is the
rate of change plus the outflow of momentum density of the ith valley.
The right-hand side represents the forces exerted by the electric field and
by the electron pressure niks T and the rate of momentum density gained in
collisions. For Eq. (77), the left-hand side contains the rate of change plus
outflow of total kinetic energy density. The right-hand side represents the
energy supplied by the electric field, the work performed by the electron
pressure, the divergence of the heat flow q1. and the rate of change of total
kinetic energy density due to collisions.

When the transport equations are derived by integration of the Boltz-
mann equation, the heat-flow vector qj appears as a third moment of the
distribution function. With the assumption of displaced Maxwellian distri- 0
butions (or any symmetric distributions), these moments vanish. In spite
of this, following Blotekjar (68], we may allow for heat conduction by
assuming

q1j -Ki VT. (80)

where K, is the heat conductivity of the electron gas in the ith valley. This
term is believed to represent the most important effect of a non-
Maxwellian distribution function [68].

The (a/a), terms in Eqs. (75)-(77) represent scattering integrals. They
may be given in approximate form by Eq. (49), for example, for polar op-
tical scattering or in exact form for the displaced Maxwellian. In the fol-
lowing simulations we chose the latter and use the integrals summarized
by Butcher (2] (see also Blotekjar and Lunde [69]). The scattering inte-
grals are then represented as

-N lc = (- N,/rT.) + (.V/.). (81)

(RPlat), = - P,/r,., (82)

= -(iVk, 1 7"/T 1 .,) - .(A',/kTj 1/-,,). (83)

We illustrate a set of scattering curves for a I'-X orientation in Fig. 24.
The parameters used in the calculations are given in Table !I. These re-
sults should be compared to those of Bosch and Thim [411. We retain the
l'-X orientation because most of the early moment equations were evalu-
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Fig. 24. Scattering rates for the parameters of Table 11. Integrals are from Butcher (2].
Cur-ves shown are [(1). CV particle: 1(2), SV particle: 1(3). CV momentum; 1(4), SV ma-

metr;I(S). CV energy. 1(6) SV/CV energy: 1(7). SV energy-. [(8) CV/SV energy.

ated for this ordering. Changing to a F-L orientation (see, e.g., Littlejohn
et ei. [44], would offer only quantitative differences and might obscure
some of the discussion.

1. ecoeryof the Semiconductor Equations. Comparison

to Nonlocal Equations

In analyzing transport from the nonlocal balance equation. we are

someimesinterested in recovering the ordinary semicondcoeqain
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TABLE If

Parameters Uscd in Calculation

Parameters ['(000) X(100) Common

Number of' equivalent valleys 1 3
Effective mass (m,) 0.067 0.40
r-x Separation (cV) 0.36
Lattice constant (A) 5.64
Density (gm/cm3) 5.37

Polar optical scattering
Static dielectric constant 12.53
Kigh-frequency dielectric C 10.82
LO phonon (eV) 0.0354

r-x Scattering
Coupling constant (eV/cm) 0.621 x 10*
Phonon energy (cV) 0.0300

X-X Scattering
Coupling constant (eV/cm) 1.0.64 x 109
Phonon energy (cV) 0.0300

Acoustic Scattering
Def'ormation potential (eV) 7.0 7.0
Acoustic velocity (cm/sec) 5.22 x 10'

and, hence. mobility concepts. For a single parabolic conduction band,
we can obtain the usual semiconductor equations through judicious
neglect of select space and time derivatives. For example, in the case of
continuity, neglect of avalanching allows us to set (aN/dt)c = 0. We then
obtain cur-rent continuity for one valley:

(./a)+ V - (v*p$) 0. (84)

For the momentum term. we set (alP1/8r), =-P 1 /T,, neglect the terms
&Po.and the contribution from V -vP and obtain

N%- = P/rn NA - F - (iu e) V (NkBT). (85)

where =e7-,/tii. Then using the Einstein relation D(F) = 1kB Tle, we
obtain

= NjF - V.\I). (86)

We see that wvithin the framewkork of the Boltzmann picture even the use
of the --semniconductor' equation (86) is suspicious. Further complica-
tions arise in multivalle% calculations where the mobility is taken as a

r5



242 H. L. Grubin. D. K. Ferry. G. J. lafrate. and J. R. Barker

weighted average

Np (F) + N(8F) (7a)(i,(F)N., + NV,

and the diffusion coefficient is given, with limited validity, by

k(F (N'Lt(F)T + N',FT
= \" (N, + N,) (87b)

Since we have a more general set of transport equations than the semi-
conductor equations, we are in a position to isolate differences between
the two approaches, even on such a relatively direct topic such as domain
propagation. Cheung and Hearn [70] examined this question by consider-
ing the mobility and scattering rates to be unique functions of electron
temperature rather than of field. They are unique functions of field only in
steady state. In their study, the particle current flux is given by a multi-

valley version of Eq. (85):

J, -Niq() F + eN X(NIT,) ( 88)
a = -- aI',N' )

.+ Nx (89)
at X +TN, (T) 7,,(Tj)' (89

with

a 32 N-k T. -JF+ (Nki+ N~k T1  a 5
NikBT 2 rI\-5 B) (90)at GT"d

We note that Eq. (88) neglects inertial terms and hence overshoot effects.
Figure 25 shows a comparison of domain size using the semiconductor
equations and the BTE. We can see significant differences.

We consider some of these inertial effects more closely by solving the
full set of equations, (75)-(77), for a one-dimensional 5000-A GaAs ele-
ment with a donor distribution as shown in Fig. 26. The element is part of
a resistive circuit. The carrier dynamics are examined at two instants of
time. (Note: Serious objections can be raised to the use of a "'jellium" dis-
tribution. insofar as any combination of decreased donor density or size
reduction will necessarily introduce effects due to the discrete nature of
the donors. This will be ignored in the following discussion. 0

As the bias is turned on. there is an increase in potential across the de-
vice and a corresponding increase in current and field. The field is com-
puted self-consistently and its slope reflects any incomplete screening of
inhomogeneities. the mobile carriers. For the device in the schematic con-
figuration of Fig. 26. as the field is rising, energy relaxation is incomplete
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Fig. 2S. Field profiles for a high-fiedd-propagating domain. Dotted curve is obtained f'rom
the mobility equations. -Solid curve is detained using Eqs. (8g)-(90). From Cheung and
Hearn (701, with permission.0 [
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Fig. 26. Schematic representation of device and circuit configuration for submicron.
homogeneous field profiles. The inhomogencous doping profile is treated as a-"jellium'" dis- I

tribution. The beginning and end of this inhomogeneity are displayed in Fig. 28c. The circuit
equation for this calculation is 60 = 61, -' IR. We set R to the low% field resistance of the cle-
ment and 46, = &9aFoL, where FO = 4..3 kV/cm and L =5000 .A Gencrall.%. 68. is turned on
af a finite rate. For these calculations. 6,1 = 3.0.
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Fig. 27. (a) Fractional central valley population versus distance. (b) Central valley tem-
perature versus distance. (c) satellite valley temperature versus distance. Computation
occurs at time tirs = 4. where To is the LO phonon intervalley scattering time and equals
0.32 psec (see Fig. 24, curve 1(3)) and To is room temperature. The gradient of N is zero at
the boundaries. All nonuniforwuities are due to the notch.

and velocity overshoot contributions are dramatic (see Figs. 27 and 28).
Here velocity is computed from the equation

WXA) PC/frnc + P3/Me 91
(v~xO) NT(x,t) (1

- 107

100

0 96

0

(c)

Fig. 28. (a) Mecan velocit% versus distance: (b) field %ersus distance: (c) free carrier den-
-,It% 'rNUS distance at time t /.- 4. Dashed curve denotes background dcnsit%.
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Fig. 29. As in Fig. 27, but at t/ro = 16.

An important point to make here is that when spatial gradients occur,
the carrier velocity can overshoot its equilibrium value even though all
time derivatives (8/Ot) are zero. This was emphasized by Kroemer [71],
who estimated substantial overshoot when aF/ax ; Fth/mean free path,
where the subscript "th" designates the NDM threshold field. Thus spa-
tial overshoot should be most pronounced in devices biased near the
NDM threshold. The results in Figs. 29 and 30 are for bias fields substan-
tially higher than the NDM threshold. In these figures, the fields are high
enough to accommodate almost complete transfer. Here the carrier tem-

o 0

-" 12

-0 0w

Ic)

Fig. 30. As in Fig. 28, but a r/to = 16.
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perature is reduced, the energy relaxation rates are shorter, and there is
virtually no overshoot. These results are virtually the same as we would
obtain using the steady-state curves.

The nonuniform field calculations are the clear order of business in fu-
ture numerical simulations but a catalog or results have yet to be pro-
duced. Until this is done, we are forced to rely heavily on uniform field
analysis.

2. Uniform Field Transients

For uniform fields, the transport equations undergo considerable
simplifications:

ai dN, - -N , (92)
dt Tiv;, T-N,

where a1 denotes the number of equivalent ith valleys. For P, = P1/N1,

43Npi Nipi
GilP_ -eNF - P---, (93)

a fNp+ 3 ) _ -eNF p, -3NkT, 3N kBT7t -n+ 2 N2 kT =  1 2 7E,, + 2r,. (94)

It is instructive at this time to rewrite the momentum-balance equation as

dp [_ + . . . -eF. (95)
dt + P di

In this form, the effect of intervalley transfer enters as an additional tran-
sient momentum scattering term [72].

As previously discussed, dynamic overshoot effects are consequences
of differences in momentum and energy relaxation times. In multivalley
semiconductors, the overshoot contributions therefore appear in the mo-
mentum. as well as the velocity, computations. We shall illustrate this for
both the central and satellite valleys and for the situations where electrons
starting with zero drift velocity are subjected to a sudden change in elec-
tric field.

For the central valley and at low values of bias, the electron tempera-
ture is approximately equal to room temperature and the ordinary time-
dependent dynamic behavior occurs. At elevated bias levels, the electron
temperature is substantially increased and the momentum-relaxation
time. due to strong intervalley coupling, decreases with increasing tem-
perature (Fig. 31). Thus. we see overshoot, in that the final momentum is
below the peak momentum (Fig. 32a). (We point out that above moderate
tcnpcrdture increae',. 1.( phonon intravalley and ionized impuritv scat-
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Fig. 31. Central valIe% momentum scattering rates versus electron temperature.

tering do not provide a momentum-relaxation time that decreases with en- -

ergy. Intervalley phonons are required. Indeed, for ionized impurity scat-
tering, the relaxation time increases with energy.') During this same time

interval, the increasing central valley temperature (Fig. 32b) results in
electron transfer, and the momentum density ,p,, shows an even greater

overshoot (Fig. 32c). We now examine the contribution of the term
dlog N)/di appearing in Eq. (95). For the central valley, where at t = 0,
Ns = 0. and p, = p, = 0. this term is approximately zero. However,
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Fig. 32. Transient central valley behavior: (a) momentum versus time: (b) temperature
versus time: (c) momentum density versus time. The circuit in this calculation is the same as
that of Fig. 26. Here, because the field is uniform, we write the circuit equation as Fe =
F0 + R/Roi. where i = 1/Noev A with v, - 12mkaTs = 3.7 x 10- cm/sec. For this cal-
culation No is 10/cm" and we have included geometrical capacitance. For this calculation,
the normalized bias Fs is turned on suddenly to the value F = 5. which corresponds to an
average field of 21.5 kV/cm (io = 0.32 psec).

when we consider the transient behavior of the satellite valley, the time
derivative of log N, is important because the change in the satellite popu-
lation, relative to the original number present, is quite large. In addition,
we note that the satellite valley momentum-relaxation contribution is al-
most an order of magnitude larger than that of the central valley. Thus. in
a time considerably shorter than that associated with the central valley,
the satellite valley momentum reaches the value

p - eF(t) I + d tlo N -

where. because the satellite temperature remains close to room tempera-
ture for large changes in field [73), the scattering rates may often be taken
as approximately constant. Combining both scattering contributions, we
see some 'overshoot" due to differential repopulation but none as dra-
matic as that associated with the central valley. Figure 33 illustrates this
point. For part (a). I corresponds to the increasing momentum prior to

--4

........... .. ^ p v,, : . ,'b,,'N,. " ,,']T] " ' .
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Fig. 33. As in Fig. 32. but for satellite valley behavior.

any significant electron transfer; 2 represents the scattering rate due to 0
repopulation; 3 is the steady-state value. In Fig. 33c, we show the prod-
uct of Ns'Ps/(Nc + 3N,). Here the prime indicates population of a single
sa-ell-teValley (N, = 3N;). We see that as far as the contribution to veloc-
ity overshoot is concerned, the electron transfer tends to wipe it out.

The average drift velocity versus time is shown in Fig. 34 and is corn- O-
puted from

_ (Nc pc/mc) + (Nsp/m,)

N + N(96)

Perhaps the most remarkable aspect of this result is the very large peak
velocity prior to steady state (see, e.g., Ruch [3)). This result has been
one among many that has led some to suppose that narrow-channel de-
vices will yield higher carrier velocities. To some extent. high overshoot
velocities are illusory, as they are very sensitive to rise time. We shall il-
lustrate this for a sequence of trapezoidal bias pulses, each with a varying
rise time (see Fig. 35). (4ee also (741.)

The first set of results'is for a relatively slow rise time and the dynamic
curves come very close to the steady-state curves (see Fig. 36). A more
significant departure from steady state occurs for the somewhat steeper
rise time. In Fig. 37, we see some asymmetry in the time dependence of
the central valley population and temperature and an increase in the peak
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Fig. 34. Mean carrier velocity, from Figs. 32 and 33.

F..

ci2

Fig. 35. T mcdpnetbafil ,ctosoArs-iedpnecoftasntvo-

i'% Fo al f he-c :1,, 5 ~l, L :ilan 0 1.4 k /ci/



LA

0

7 
0

U U

AC

0 2000 0 2000

TIE ITS TWEIT O

(b) (c)

Fig. 36. For this pulse. t, = 500/v. (see Fig. 35), f, = 600/vo, and is = 1200/ro. (a) Mean

velocity versus field (Fe = 4.3 kV/cm); (b) central valley populations versus time: (c) central

valley temperature versus time.

0
2 6

FIF
O

(a)

S I - v

[ ---F

bD) (c)

Fig. 37 -NN in Fi 36. but here t, =50,',. t 60/-,,. and t 10 r.

2--A"

* .. ,~ ,



252 H. L. Grubin. 0. K. Ferry. G. J. lafrale. and J. R. Barker

2

>0 r/ro
a0oi

r~r
o

o~ 205"

T I ' ./ 0  T v " I r

(b) (cI
Fig. 38. As in Fig. 36, but here t = 5/to, t= = 10/r. and t = 15/o..

velocity. In the final sequence, we show results for a very short rise time.
We see a dramatic increase in the peak velocity and clear asymmetry in
the carrier dynamics (Fig. 38). Indeed, the final point of approximately
zero field and velocity is not an equilibrium state. Rather, we have a dra-
matic example of velocity undershoot. A longer time is needed for the
electron temperature to approach equilibrium. There are strong implica-
tions here for upper-frequency limits of device operation.

S
3. Determination of Maximum Frequency for Small-Signal,

Large-Signal, and Self-Excited Oscillations

Perhaps the earliest attempt to examine the upper-frequency limit for
large-signal oscillation was that of Butcher and Hearn [4]. Using a set of
displaced Maxwellian electron distributions for each valley, the set of dif-
ferential equations [see Eqs. (92)-(94) for the time-dependent electron ,%.
temperatures, drift velocities, and valley populations was solved for a dc
biaN field plus rf field. The results of their study are sh, wn in Fig. 39.

In Fi. 39. the mean d-ift velocity and satellite population are shown as
functions of a total field consisting of a dc field of 15 kV/cm and a 60
GHz if field ith an amplitude of 13.1 kV/cm. The arrows indicate the

0%
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Fig. 39. Plots against field: (a) fractional satellite population; (b) mean drift velocity for a
60-GHz rf field of 13.1 kV/Vcm superimposed on a dc field of 15 kV/cm. The dashed
curves give the static values. From Butcher and Hearn [4]. with permission of lEE.

direction of increasing time and the dashed lines represent the static rela-

tionships. Near the maximum field of 28.1 kV/cm, the satellite population
(Fie. 39a) approximates well the static value because the field is stationary
and the variation of the population is nearly saturated. The curve is quali-
tatively similar those of Fig. 37. We see again the higher satellite popula-
tion on the downswing and the absence of negative differential mobility. ,
WVe point out that these curves very likely constitute the earliest attempt
at including overshoot contributions.- For dc bias levels of around 10 to 20
kV :m and ac levels of 13.1 to 18.6 kV/cm, they obtained an upper-
frequency limit of 100 GHz.

From the point of view of a device physicist. a driven oscillator proba-
bkl ies somewhere between a small-signal and a large-signal self-excited- -

o,,,illator. The self-excited oscillator is perhaps the most interesting of the
three because It highlights the tenacious balance between electron
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Fig. 40. Self-excited oscillation for the circuit displayed in Fig. 41, where No
1016/cm 3. Oscillation frequency is 78 GHz.

transfer and sustained oscillations. It is extremely sensitive to contact,
space-charge, and circuit conditions [8c]. We examir.:c the upper-
frequency limit for the device in a circuit with reactive elements. Figure
40 shows the oscillation.

The circuit differential for this oscillation is given by Eq. (11). For non.
linear devices, this equation offers difficulties in interpretation. For inter-
pretative ends, we replace the nonlinear element by a nonlinear resistor
with the current -voltage 10(V) relation. Then, Eq. (12) is conceptually re-
placed by [8c]

+6 +~Id. d6 + + RIO.

(L CF ZO=.LC

where d1,.,!6 represents resistance. When dI0 /d~b > 0. Eq. (97) yields
damped oscillations. When dI,/dd < 0, the oscillations growk In ampli-
tude. As dt. 16 chang'es sign during each c% cle, the correct set of circuit.%
bias, and de% ice parameters can vield sustained circuit-controlled oscilla-
tions (8c].

Severil aspects ofa self-excited oscillation are displayed in Fig. 40. 'The
current through (he load resistor is displayed in part (b):. the dynamic volt-
age and 1- 6. obtained by eliminating time between current and device is"

1Q1 %r~ ~ 5,~~*, i.
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shown in part (b). We also display the mean velocity (dynamic conduction
current). The details of the oscillation will be discussed next.

As the field across the device increases and exceeds a threshold, value
transfer begins to occur. However, because the field changes more rap-
idly than the electron temperature, more carers are retained in the cen-
tral valley, and with higher momenta than steady state would dictate. This
effect is responsible for the higher peak conduction current. But if the
increasing electric field sustains high fields for a sufficient duration,
enough carriers will transfer to result in negative differential mobility
(NDM), which must be of sufficient magnitude for sustained self-excited
oscillations.

On the downswing, the field again changes more rapidly than the elec-
tron temperature and more carriers are retained in the satellite valley; i.e.,
we achieve transient undershoot. Now, although NDM is not necessary
on the downswing [8c], enough carriers must be returned to the high-
mobility valley for transfer on the upswing and NDM to occur. This
means that the field must change slowly enough to allow a dump of can-i-
ers from the satellite to the central valley. If the field changes too rapidly,
too many carriers are retained in the satellite valley and NDM is too weak
to sustain steady-state oscillations. In Fig. 41, we plot the maximum fre-
quency of self-excited oscillations as a function of dc bias.

The large variations in field and carrier temperature for both self-
excited and large-signal-driven oscillations should result in quantitatively
different upper-frequency limits than that obtained for small-signal oscil-

200

GHz 150

100-

50 1
0 16.8 33.6 S0 4

klWcm ,

. N -reqie . fo self-excited o,.dltion,
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Fig. 42. Maximum frequency for small-signal oscillations

lations. We have examined the latter by perturbing a nonlinear element in
steady state. The perturbation is a square wave voltage pulse and the re-
suiting response is then Fourier-analyzed. The results are shown in Fig.

42, where we plot the maximum frequency of small-signal negative con-

ductance as a function of dc bias. The most significant feature here is that

.rna for small-signal operation is significantly greater than that for large-
signal operation. We note that when similar calculations with the non-
linear element driven by an ac source of controlled amplitude and
frequency are performed the results bridge the small- and large-signal
oscillation calculations.

The explanation for differences in the large- and small-signal results lies
in the energy scattering rates (see Fig. 24). For large-signal oscillations,
the transient temperature in both the central and satellite valleys oscil-

lates over a larger range than that for the small-signal oscillations and
sample lower scattering rates. This gives rise to the reduced maximum
frequency for the large-signal oscillation.

Detailed analysis of the frequency limitation of the transferred electron
effect i GaAs using the SETEM approach was recently discussed by Rol-
land ci a!. [75). The% were able to show that reasonable efficiencies could

be obtained with frequencies up to 150 GHz and offered the uniform field
mode as an alterna:ive means for circumventine the drastic size restric-
tion's usually associated with multimeter wave devices.

4. Length Dependence of Negative Differential Mobility

We have been di-,ussing the upper-frequency limit of transferred elec-

tron devices from the circuit viewpoint and [he transfer and return of eiec-
tnn, cfie t -. c',ral and subidI'.% valle%. In (hi, mll "I " C

~ p.-' .-
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Fig. 43. Length dependence of negative differential mobility.

not explicitly considered the following problem: When an electron enters
the active region of a device, it accelerates in the presence of an applied C
electric field. If the initial drift velocity of the carrier is low, is the transit
length sufficient to cause electron transfer and negative differential mobil-
ity? The answer lies in earlier calculations. If the carrier experiences a
sudden change in field, the mean initial transient ( << LO phonon scat-
tering time) will increase approximately linearly with time, followed by a 0
region where v will approach - erF/r* for a single valley. If the transit
time is short enough to prevent significant transfer, NDM will be weak, if
at all. Figure 43 summarizes where, for uniform fields, device length is a
derived quantity [74.76]. Here

L = 10 v(t) dr. (98)

Now the velocity versus field curves and the velocity versus time
curves of the type shown here provide an indication of why there is inter-
est in submicron devices. The possibility exists for achieving very high
,.elocities over very short distances. But. again, a word of caution. The -

calculations of Fig. 42 are for carriers subjected to sudden changes in
field. As we have seen. finite rise time dramatically reduces this peak. so
the results will be somewhat less important.

G. Ballistic Transport

On the basis of the discussion associated with Fig. 42. there exists an
interesting conceptual possibility of a 'mean" ballistic transport, where a
'typical" electron ma "apparently" travel without scattering. (In the

£0
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context of semiconductor carrier dynamics, this concept of an electron
lucky enough to escape collisions was first suggested by Shockley [772 in
studying impact ionization phenomena.)

Although the physical concepts associated with ballistic transport have
not been completely discussed, one point should be emphasized. The
equations used tend to treat the mean particle as if it were an isolated elec-
tron uncorrelated with any other electrons. In actual fact, the correlation
among electrons is very important and governs the transient response. As
a consequence, ballistic transport based on mean electrons may not be
appropriate to semiconductors. With this caveat, we nevertheless discuss
some aspect of this transport. We neglect statistics and assume that the
number of electrons involved has a monoenergetic distribution and that
electron-electron scattering has not contributed to the broadening of the
distribution (see Hess [78]). Under these conditions, the following three
equations are necessary: the conduction current equation,

J = Nev, (99)

the Poisson equation, and the equation for electron velocity (conservation
of energy),

n*v 2(x) - e4(x) = m*0(O) - e6(0), (100)

where v(O) corresponds to some initial velocity.
It is clear that these equations yield a set of current-voltage character-

istics for any spatially dependent doping level. The simplest case to con-
sider is that for which the charge density injected at the cathode is consid-
erably greater than the background doping density, which is assumed to
be uniform. In this case No is ignored, and solutions are borrowed from
the analyses of electrical phenomena in gases [79), The point we shall
emphasize here is the role of the cathode on the resulting current-
voltage characteristics.

First we take the special case in which the cathode is an inexhaustible
source of electrons, i.e.. N(x = 0) -. The t = 0. and we obtain
Child's Ilai (see. e.g,., Shutr e al. [80]).

J = (40/)Q2e/11 '[c(.01 V.0.11. (101a)

(Note: Assuming energe loss by collisions. Eq. (10a) no longer applies.
In the simplest case where t = Ft-. where IA is constant, the current-
vohagze relation is the same as that for unipolar flow in dense gases[79r:

J (9ES)/(d(W.x3 ). (lOib)

7 * '-ACC .... l,
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Fig. 44. Characteristics of space-charge-limited current with v = uF and zero cathode
velocity: (a) voltage versus distance; (b) field versus distance: (c) carrier density versus dis- f
tance: (d) current versus voltage. Dashed line signifies possible thermionic-limited cathode.
See also Papandor (81].

where x is the distance from the source. Figure 44 [81] illustrates the po-
tential and carrier distribution for this case.) In general, we may expect
the electrons to be emitted with a finite velocity. In this case, n(X = 0) is 0
finite. Among the consequences of this are that the field at the cathode is
no longer zero. Then. if a potential minima 4,, occurs at a small distance
from the origin, as shown in Fig. 45, for example, beyond this minima the
system behaves as if there were a potential difference 6L) + 6  (see
Fig. 45) between the anode and a virtual cathode at X,. Thus (79],

j : ( 2e)U2 (L) + m)3 (102)

Since we may expect the cathode velocity and, hence, Xm to depend on
the current. the J6) characteristics may be expected to depart signifi-
cantly from a "a" relation.

I t

(a) Wc)

Fig. 45. Sp.,:e.ch-ge-limizted current floA. showing the influence of finite c:+:,,'e 'Cloc-
: ) %ohiie %ersus distance. (b) field versu, distance: (c) crner dcnaii ver'u , ,Jlance.

ako ' .,' Y oq dar Ix! .-
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Fig. 46. Suggested simple model for a semiconductor device showing the role played by
the contact, space-charge, and transport properties. The parameters are discussed in the text.
From Ferry et at. [82], with permission.

The situation is even more complicated than just stated. The cathode
may be thermionically (see Fig. 44) limited, there may be two-dimen-
sional variation in the cathode structure, the distribution of carriers at the
cathode may vary, etc. What this means is that for collisionless transport
the I- V characteristics are dominated by boundary conditions and not by
ballistics. From a systems viewpoint, the ballistic device has an equiva-
lent circuit like Fig. 46 [82]. Here Rd and Cd define the drain character-
istics, Rs and C, define the source characteristics, C is the total device and
package capacitance, C' is a space-charge capacitance, Rr is the resist-
ance due to surface scattering, and Z is the carrier dynamic impedance,
which is mostly resistive in long channels but will have an inductive con-
tribution in the ballistic regime due to carrier retardation (see also [83)).
Here. however, ac contact impedance may camouflage this contribution.
The impedance Z is further complicated in ultrashort channels where
transport is likely to be dominated by size-quantization effects [7.84]. It is
unlikely that Zcan be observed in dc measurements, but the inductive na-
ture should be observable in microwave experiments [83]. or time-of-
flight [85) techniques can be used to observe the change of ,(F) character-
istics to the characteristic 6112.

Since the possibility of ballistic transport offers interesting device appli-
cations, care must be exercised to avoid oversimplifying the criteria for its
existence. As indicated, the simplest condition for ballistic transport is
that the channel length d be smaller than the bulk mean free path It,. How-
ever. a number of effects conspire to make the problem more compli-
cated. First, if the overall device dimensions are such that d = 1,, carriers
injected at a nonzero angle to the channel may traverse trajectories whose
path length exceeds 11, and will, therefore, scatter. This will be particulary
important for wide devices. Second. if the overall device dimensions are
lcv- than 1,. some carriers injected at norzero angles to the channel direc-

.K' , T ' ' ,t0,
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lion may intersect the device boundaries and undergo surface elastic or
inelastic scattering. Depending on the critical dimension I4, surface scat-
tering may extend through a significant portion of the device volume.
Consequently, b should be replaced by I.. which depends on the finite
geometry, the electric field strength, and the surface/environ scattering.
Third. if intradevice scattering is negligible, the current flow may be
space-charge-limited because of Coulomb scattering. As we have seen. if
space-charge exists, it is almost impossible to unfold the ballistic efforts
from the space-charge-limited current. A fourth problem relates to de-
vices configured to dimensions comparable to the de Broglie wavelength;
carrier reflection effects may then become important and carry an en-
hanced probability of scattering. In this case we need to examine quantum
transport theory (QTT) and apply it to submicron devices. Generally, QTT
involves solving the equation of motion of the density matrix. We shall in-
troduce this briefly in Appendix B (p. 290).

IV. QUANTUM TRANSPORT THEORY

A. Introduction

Boltzmann transport theory (BTT) is an ideal theory. It has the twin
virtues of conceptual and mathematical simplicity. Quantum transport
theory (QTT) [60,86-91] enjoys no such status; it is neither conceptually
nor mathematically simple and often reduces to the Boltzmann picture
[92.93] only after considerable labor. Even if there were no outward
experimental manifestation of quantum transport phenomena. QTT
would still be necessary to explain how the phenomenological BTT pic-
ture and its related concepts actually arise from the underlying framework
of reversible quantum statistical mechanics. Thus QTT is necessary as an
explanatory and supportive theory for the Boltzmann picture (where such
a picture is applicable), for setting confidence limits for the application of
BTT. and for developing the novel concepts and transport kinetics neces-
sar% for describing manifest quantum transport phenomena (those effects
that depend e\plicitly on the quantum-mechanical nature of the electron
as %kell as those processes for which the local Boltzmann description
fails).

Boltzmann transport theory models the conduction electrons as an
approximatel. independent-particle dilute gas in which the electronic
sties are nearly stationary and free-electron-like with a well-defined mo- O.
menturn k [921 Nonstationartcv arises from the assumption that perfect

ub
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crystal periodicity is violated by imperfections, impurities, and phonons.
These sources of crystal imperfection are assumed to cause weak, infre-
quent scattering of the electrons among the states {k). The applied electric
field serves to accelerate carriers through the momentum states without
distorting the states or interfering with the scattering process. It then
seems meaningful to describe the carriers by a classical distribution func-
tionf(r,k,t) over a vaguely defined phase space (r,k] in which r, the posi-
tion coordinate for the carrier, is not too well defined in lieu of the uncer-
tainty principle (94].

Usually, one deals with macroscopic systems so that the intuitive con-
cepts of Td, the transit time through the channel length; T, the mean free
time between collisions; and ie, the atomic duration of a collision, are as-
sumed to satisfy the inequality

'c << T <<d (103)

Transport processes are thus conventionally viewed on a coarse-grained
time scale 7 >>i-c so that many independent collisions are assumed to
occur in the passage of a carrier through a channel length. Moreover, each
collision event is treated as an irreversible process that occurs locally in
space, locally in time (instantaneously), and independently of any driving
fields and other scattering processes. Given these assumptions, the time
evolution of the distribution function f is governed by

(f/at) + (Of/ot)diff + (Of/Ot)fetds = -(8ffat)o 11. (104)

The left-hand side of Eq. (104) is time-reversible, but the equation overall
is irreversible due to the gain-loss structure of the collision integral on
the right-hand side.

From the preceding discussion, it is clear that the central concept of
classical transport physics is the assumption that a single carrier-
distribution function exists that may be used to compute statistical expec-
tation values for macroscopic current flow. In the quantum formulation of
transport physics. the concept of a distribution function that depends on
position anJ momentum of the particle is not possible inasmuch as the
Heisenber, uncertainty principle precludes simultaneous specification of
position a'.-. momentum. From the quantum viewpoint, it is therefore
necessary io conceptually %'ie'k phase space as coarse-grained if a ditri-
bution is to be regarded as a simultaneous function of carrier momentum
and position The conceptual difficulties introduced by the noncommuta-
tivity of the carrier position and momentum operators are no, too critical
for large de ices (channel length greater than I jtni), for, in this case. it is
Lenerall _-,Sumed that spatial ariations in the distribution function occur
over distaices that are large compared to the de Broglie wa' elength of the
cfrrier
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The temporal development of the distribution function is also an impor-
tant facet of the transport picture. When considering carrier transport in

h large devices, the temporal scale of the distribution function is very long
compared to the collision duration but very short compared to the total
transit time of the carriers, in which case the response of the distribution
function to fields and collisions is instantaneous. For medium-sized de-
vices (channel length of about 2500 A), the temporal scale of the distribu-
tion function is of the order of the collision time but short compared to the
transit time of the carriers, so that retardation due to the finite duration of
collisions becomes possible. For very small devices (channel lengths less
than 250 A), the collision time is of the same order of magnitude as the
transit time, so that the applicability of a classical distribution function is
questionable.
In order to continue the distribution-function approach, it must be pos-

sible to define such a distribution function over suitable momentum, spa-
tial, and temporal variables. The concept of the carrier-distribution func-
tion is expected to retain a useful role in medium-sized device transport,
but with major modification in the Boltzmann transport equation. How-
ever, for "very small device" transport, where the analog of a distribu-
tion function certainly exists, an alternative approach to BTT, which
emphasizes the role of device environment, size quantization, and fluctu-
ations seems to be necessary. There has been some success in estab-
lishing the existence of distribution functions by employing the concepts
of the statistical density matrix and the Wigner- density matrix (see Ap-
pendix B). In the remainder of this section. the density matrix formalism
and its relation to quantum transport will be briefly discussed. an illustra-
tive example of the usefulness of quantum transport will be given for an
array of very small devices.

B. Quantum Transport Formulation

Features that are neglected in BTT provide the warning signs for the I"
Et.ilure of the semiclassical approach. These features will now be cited and

discussed.

(I) N.,Al,, alit o..two terinl.' p u 'esses. Each collision event is actu-

allv extended in space and time. If the spatial and temporal variations
idescribed b\ wavevector q and frequency w) of the applied driving
forces approach the microscopic scale. then collil-ions will be on!y par-
tiAlly completed. Normall.%. BTT assumes W7 < I and qL < I. where 1. is
the mean free path. i.e.. Man% collisions are completed in one cycle of the
,:pplid fore' If. hoke'ei. .,-,,. 7 I and qt-,. ;> I (where -, i., estimated
, h/h. . -.: ,hztact r':I, .t: rio- lel .. a nd I , ilS ( tic tlric % . C-

M7



264 H. L. Grubin. 0. K. Ferry. G. J. lafrate. and J R. Barker

length), appreciable quantum effects can arise and the irreversible charac-
ter of completed collisions will be lost. Interband effects may also occur if
AIWAq/m * ;L- Eb, where Eb is the vertical energy separation to the band
controlling m*. Very high frequencies correspond to a quantal behavior
more reminiscent of optical response (95-97]. The elementary treatment
of collisions must also be reconsidered if the mean free time becomes
comparable to T,; multiple scattering involving at least two scatterers is
then possible.

(2) Strong driving forces. Once the extended nature of a collision is
recognized, it becomes obvious that applied fields can transfer energy and
momentum to the carrier during the collision; an interference, or intracol-
lisional, field effect results [63,65,98]. The effect will be very large if
eFrT = E. The reverse effect may also occur; scattering can forestall the O
instantaneous accelerative effect of the driving field (this effect also
occurs for low fields). In general, the driving and scattering terms in BTT
cannot be independent.

(3) Strong scattering. Strong scattering magnifies the previous
problems and weakens the assumption that the electronic states are of
long lifetime and are free-electron-like. Polaron and cooperative effects C
are typical consequences.

(4) Dense systems. Many-body effects and a single-carrier descrip-
tion fail.

(5) Small systems. Size quantization or surface-limited transport ef-
fects become important [99]. Ultimately. the condition implicit in Eq.
(103) breaks down.

(6) Non classical influence of driving fields. Sufficiently strong elec-
tric and magnetic fields lead to Stark or Landau quantization of the elec-
tronic states [99).

These features and the concepts discussed therein are intuitive but ca-
be given precise meaning within QTT, to which we shall now turn.

Quantum transport theory is generally based on the Liouville-von
Neumann equation for the statistical density matrix p(t). which is given a;

i a~p(t)/bt = [-l p(t), (00 )

where H. = t - .7. and the Hamiltonian H describes the full system i,. N
the absence of the coupling 5, to the externally applied driving forces. The %
usual bourdarv condition is that p = ptH) for t< 0. where Pu is 3
thermal equilibrium .olution (e.g.. the grand canonical density matrix
The dri'. perturbation is initiated at t = 0. This starting point need,
modific:.',,n fOr the description of small s% stems embedded in an interac-

~ ~ ~ - v- .~ -
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live environment (59]: this aspect of QTT will be discussed later in this
section. (Note: The units are chosen so that A = I throughout.)

All observable properties, e.g., the current or charge densities, labeled
generically by Jh may be evaluated as quantum-statistical expectation val-
ues determined by p() as

A.A. (107)

Here (jX~} is any complete set of states. Usually, the Hamiltonian Hi, is '
partitioned into "free" carrier, "free" scatterer, camrer-scatterer in-
teraction, and driving force components as

Hr =H, H, V W HO V F.(108)

This partitioning is not unique. The component He might describe small
polarori states by incorporating parn of the electron-phonon interaction,
or H, might include the coupling to a magnetic field and describe Landau
states. The basis states JX) are then chosen to diagonalize HO = H, + H~,
usually via IX) m le)IS), where (je)}. (Is)) diagonalize H. and H~, respec-
tively. The choice of representation (IX)l decides the character and inter-
pretation of the subsequent transport theory.

If the current-density operator J depends only on electronic variables
and commutes with H, (which is true for extended-state, homogeneous
transport in zero magnetic fields). the observable response is

0(0 Jlfte). (109)

where

Po= C! sjjs.0 rep~) -((lpe), (10

defines a real. time-dependent. generalized. electro_-n-distribu:Ion functiOn
over- the free-ca.rrier states fie)) A transpori equation forfbe) may then
be constructa~le from the Liou~ille equation. It may turn out to have
Boltztrnann-like form. although ine quanitum n.ture of the sitares le) %ik MI
be reflected In the detailed forms for the collision rates. llo% ever. for in-
hornogeneou,; transport and for transport in quAntizing magnetic field<.
for example. J is not necessarily diagonal and we must consider the
off-diagonal rnatri\ ek-ments of the electron density mnatri\ f = ('

Various methods e\ist [99) for e\pressingfwci in termis of *~.£) but thea

1ItSCbseqent transport theory %kill not have at Bohirmann-like form. In aen-
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eral. a closed equation of motion forf(t) can only be obtained for the spe-
cial case of independent carrier transport in a stationary scattering system
(i.e.. where the scatterers remain in thermal equilibrium at all times). This
situation has been extensively studied for homogeneous, nonlinear trans-

port.
Wigner [100] has shown that QTT can get quite close to the classical

concept of a phase-space distribution function (see Appendix B). The
Wigner one-electron distribution function, for example, is defined for
free-carrier states by

f =(krt) f d'y exp(-ik- y) Tr~p(t)iQ)(r - iy)qi=(r + iy))

J d'y exp(-ik • y)f,(ry,r),

where Q(r) and qki(r) are the second quantized creation and annihilation
operators, respectively, for a carrier of spin a- at location r. Here p is sec-
ond quantized and the trace is a many-body trace. Similarly, a phonon
Wigner distribution may be defined by

0
Nk,r,t) = I exp iK" r(b1(k - K)b, (k + K)) (112)

IC

where (.. Tr(. . . .) and bj and b. are creation or annihilation
operators for a phonon of type at and momentum k. The Wigner construc-
tion utilizes a partial, generalized, Fourier transform over the full (off-
diagonal) density matrix and is easily generalized to other basis states
(e.g., Bloch states or Landau states). One may easily prove thatfg and N.
are real-valued, generalized distributions that give the correct statistical
expectation values. e.g., the carrier density and current density in an in-
homogeneous system are given by

(n(r.t)) = f, I(rlk.r,t). (13)

f d3k

(J(r.a)) = j ev(klf,(k,rt). (114)

%k here v(k)- VkE(k) is the (c-number) group velocity of the electron mo-
mentum state Ik). Homogeneous systems are translationally invariant
f..(k.r) is independent of r]. which implies that

f(k.Kt) f expt-iK R).f*,(k,R)d:(R

i independent of K and the equivalent elecron-densitv matrix is diagonal %
in momentum space.

0

-A.
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The are some difficulties with interpreting Wigner distributions as prob-
ability densities; they are not necessarily positive-definite (usually a sign
of strong quantum interference effects). However. the Wigner method
does allow one to construct a gauge-invariant transport theory (97]. For
independent carriers.f, reduces to (r - iyj(p).jr + Jy) where p is now a
functional of the one-electron Hamiltonian. Quantum transport theory
has been extensively developed for this case [88].

We shall now sketch the general features of QTT. The electron-density
matrix f(i) is determined from the full-density matrix by f(t) = Trjp(t)].
For the case of stationary phonon and impurity distributions, we factorize
approximately the initial thermal-equilibrium density matrix as

p(t = 0) = fo(He + V)f1(H.),

where f0 will be taken as the Maxwellian equilibrium form and f1, de-
scribes the equilibrium distribution of scatterers. Let us now Laplace-
transform the Liouville equation (105), rearrange the terms using projec-
tion calculus, and then retransform back to the time domain to obtain a
general master equation in the form

+ i[HeJ ] + i[,FJ] = i f dT e,(r)f(t - T) + My(t). (115)

The left-hand side of(1 15) describes the collision-free diffusion and accel-
eration of the carriers. For homogeneous systems, f is a function of
momentum only and if He = p2 /2m*, the term [H,f] vanishes (for
inhomogeneous transport it gives rise to a term v(k) af/ar; [He,f] is also
nonvanishing if H, includes coupling to a quantizing magnetic field). With
our previous model assumption, the coupling to the electric field is simply
S=_ --- eF • r, and in the momentum representation. i[ Ff] reduces to eF
df/8k. The right-hand side is proportional to the scattering interaction and
describes collision effects via CF and memory effects via MF.

Boltzmann transport theory may be exactly recovered under the fol- ,
lowinc conditions [63]: (1) weak. infrequent scattering: (2) point colli- low
sions: (3) translational invariance of the scattering system" and (4) asymp-
totic time scale I >> 7, [actually related to (104)]. Following these
assumptions. it can be shown that the right-hand side of Eq. (115) re-
duce tcoO

7)', = S' [R(k.k')f(k') - R(k',k)f(k)]. (116)

where the R(k,k') are the usual second-order perturbation theory scat-
terine rates. Thus. under these conditions, the master equation of Eq.
(115) reduces to the Boltzmann equation.

The master equation of Eq. ( 1) contains a memory term M., which

N0
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is one consequence of the interference between the electric field and the
scattering processes and is a function of the initial equilibrium state
f(H, + V). It represents the correction to the otherwise instantaneous
accelerative effect of the field due to the field having to break up the corre-
lations in the electron states induced by scattering processes. Indeed, MI
may be interpreted as a renormalization of the driving-force term in the
kinetic equation (99], because its nonvanishing part is proportional to F.

The influence of the electric field within a collision event has been
called an intracollisional field effect (ICFE). The mathematical details of
the ICFE have previously been given (881, so we shall not go into detail
here. Two major modifications of the scattering integral occur as a result
of this intracollisional process. First, the total energy-conserving 5 func-
tion is broadened by the presence of the electric field. Second, the thresh-
old energy required for the emission of an optical phonon is modified,
which causes an energy shift of the 8 function. This latter process is easily
understood in physical terms. The argument of the energy-conserving

E( - E, ± hwo = E(pf) - E(pt) ± hwoo, (117)

but the initial and final momenta evolve during the collision as

Pt)=p eF(t") dt", (l18a) 0

p'(t) p' - " eF(t") di". (Il8b)

In the emission of an optical phonon, where the electron is scattered
against the electric field, the field will absorb a portion of the electron en- 0
ergy during the collision, and, hence, a reduction in energy loss to the lat-
lice will be favored. The opposite effect, an enhancement in energy to the
lattice, occurs for emission along the electric field.

C. Synergetic Effects from Device-Device Interactions

Preliminary theoretical studies [59] of the quantum-mechanical opera-
lion of an arra% of very small devices suggest that synergetic effects are
possible when the individual feature size decreases below 1000 A. In this
case. novel dev:c, possibilities become available.

Let us summarize some previous findings (59). Small semiconductor
device I< I0. l-u m channel length) are controlled by: short spatial scales.
ver% fast temporal response. very high fields (-600 KV/cm. high carrier
denities (-<10 " cm'). and strong size-related effects (coupling to the

N .~ , - -



-. . j , , . . . . ' - -,'

6. Numerical Physics of Semiconductor Oevices 269

environment of contacts, interfaces/boundaries/surfaces, interconnects.
and other devices). The ultrafast transit times (-5 1-2 psec) within any one
device plus the collision-quenching intracollisional field effect preclude
any significant dissipation of energy within the device volume; tradition-
ally, this is the so-called ballistic regime). However, studies of the
device-density matrix equations [59], which take into account coupling to
the device environment, show that dissipation will predominantly occur
over the extended region surrounding the device. This mechanism admits
a second-order device-device correlations interaction, provided the
spatial extent of interconnect regions becomes comparable to the de
Broglie wavelengths (indeed, for metallized interconnect regions on the
order of 100 A,. de Broglie waveguide modes should dominate the current
flow). By using projection calculus methods on the full system-density
matrix equations, it has been shown that the interaction of a particular de-
vice with its host VLSI system may be classified into coherent (time-
reversible) and incoherent (dissipative, irreversible) components. The
coherent effects include state renormalization and size quantization
arising from the short-range interaction with the regular part of the finite
device boundaries; these effects are enhanced by very high, inho-
mogeneous, controlling electric fields within the device volume. There is
also a coherent long-range device interaction with the environment,
which stems from effects of device replication and gives rise, for example, ..
to super-lattice phenomena and the consequent overriding of the bulk in-
tradevice carrier dynamics. The latter have already been observed in in-
tercalated structures prepared by molecular-beam epitaxy [102]. The
incoherent processes include surface-interface roughness scattering, sur-
face phonons and plasmons, long-range ( I m) device electron. insu-
lator phonon scattering, and phonon-mediated electron-electron inter- a
device scattering.

The joint action of many subsystems so as to produce structure and
functioning on the full-system scale are well known in physical science
and are characteristic of nonlinear systems [103]. In recent years. consid- N

erable attention has been devoted to so-called dissipative structures [104]:
a class of spatially inhomogeneous, ordered structures in which orderU..
rtla% be created spontaneously in open systems far from equilibrium and

%hich obey specific nonlinear kinetic (transport) laws. For such nonequi-
librium structures. stability is not self-sustaining but is maintained by a
continuous exchange of energy and matter with the surroundines. Biologi-
cal systems. chemically reacting mixtures under open-system conditions,
and l3enard cell phenomena provide well-known examples.

Comparahl. comple\ signal-processing VLSI systems niau ako sup-
port '. ncfrLetic phenomena as the feature size and coruplexit approach
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that of natural systems. Analogies with many-body phase-transition and
synergetic theory lead us to expect strong qualitative differences in stabil-
ity between sequential and concurrent (array) processing signal systems.
The argument is simple; we know from model studies that one-
dimensional systems cannot support phase transitions: but. as soon as
two- and three-dimensional cross-interactions are introduced, systems
may condense or "lock into" ordered macrostructures and make transi-
tions between them. Concurrency has a strong equivalency to multidi-
mensionality, which is, in turn, a prerequisite for cooperative phenomena
that are stable against local fluctuations. All the necessary features for
synergetic phenomena in VLSI structures appear to exist when feature
sizes approach a few hundred angstr6ms, such as in multidevice slaving in-
teractions, nonlinear slaving of intradevice variables by self-consistent
control fields, input-current open-system operation.

Of course, device-environment interactions are not unknown even in
present scale systems. For example, gated logic systems and program-
mable logic arrays have device-environment control exercised via the in-
terconnect matrix. A true device-device interaction also appears in large
MOS memory chips (near-cell interference in READ-WRITE situations),
which is currently treated as a reliability problem rather than an effect on
which to capitalize. Of course, capacitative coupling between devices is
also very familiar. The true device-environment coupling envisaged
here, however, is only possible on almost atomically small scales for 0
which superlattice effects and dissipative coupling become possible.

The main theoretical tools to explore synergetic VLSI already exist:
nonlinear quantum transport theory, synergetic theory, renormalization
group theory, etc. However, applications will require (a) knowledge of
the intended function and skeletal VLSI structure, (b) characterization of 0
the relevant interdevice coupling, and (c) selection of the appropriate con-
trol fields and currents. These do not as yet exist and must be the target
for future research. We have, however, sketched the outline for such a
theory using many-body compaction techniques [1051. Such sophistica-
tion is not necessary to understand the qualitative role of these synergetic J1
effects. We can illustrate the basic principles by a simple circuit-theoretic
analogy utilizing component -connection-type approaches. First. we
examine a special case of isolated devices. Then, we introduce a connec-
tion function to describe the system in terms of the devices and show how
the properties of the connection function can alter the system dynamics.
As the individual device dynamics and connections will be nonlinear. %e
expect that, although the equations used here are linear, the general non-
linear results will admit of synergetic responses for the system. Thus.
Thus. for example. a regular. replicated device structure in the environ- 0,
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ment is expected to give a superlattice modulation of the individual device
dynamics. Now, "superlattice" in the normal sense is usually used to
refer to multiple thin layers of different materials in which the layers are
thinner than the electron wavelength so that the atomic potential variation
between layers introduces minigaps, which represent a renormalization of
the energy spectrum of the electrons within a single material. Here, how-
ever, we emphasize the device-device or device-environment coupling,
which can be an essentially time-reversible interaction [59], to renor-
malize the functional behavior of a single device within the array and to
change the system dynamics of the array itself. In particular, if the spatial
extent of interconnected regions becomes comparable to the range of pos-
sible device-device interactions, a second-order device-device correla-
tion or interaction arises, from which the coherent long-range component
admits to possible functional superlattice phenomena. In these cases, in
very small devices, the bulk intradevice dynamics may be of secondary
importance to the system dynamics taken as a whole.

In particular, though, it is apparent that the system equations are func-
tionally similar to those utilized for nonlinear structures, (104], and for
such nonequilibrium structures, stability is not self-sustaining but is main-
tained by a continuous exchange of energy with the surroundings. Com-
parably complex signal-processing VLSI systems may also support syn-
ergetic phenomena as the feature size and complexity approach that of
natural systems. Analogies with solid-state and synergetic theory there-
fore lead us to expect qualitative differences in stability between sequen-
tial and concurrent (array) signal-processing systems.

We examine first the state equations for an isolated integrator with
input/output conditioning and then examine the applicability of the ex-
ample. The state equations are then, for the ith device,

t i = aiui + b1y', (119a)

zi = ciui, (119b)

where u, is the state variable and y' and :i the input and output variables,
respectively. For an ensemble of N devices, these become

U = AU + BY, (120a) 0

Z = CU, (120b)

wkhere A, B, C are square diagonal matrices and U, Y, Z column matrices.
Solving for the transfer function gives (in the Laplace transform domain

i,,h relaxed initial state)

Z z C(sl - AP- BY. (121)

%U
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So far, we have considered that each device was isolated from the others.
If we describe the system input and output as G and H. respectively, we
can describe the connection matrix F through the following [106]:

Y = FZ + LG, (122a)

H = MZ. (122b)

The connection matrix F describes generally how the input of a particular
device is related to the outputs of other devices. We can combine Eqs.
(121) and (122) to yield the system transfer function as

H = MCB(sl - A - FCB)-' LG, (123)

where we have used the fact that A and, hence, (sl - A)-' are diagonal.
Equation (123) for the system-transfer function is a special case of the

connection-function theory of systems [106] applicable to the integrator.
Although we have used this special case, the approach is far more general
and is applicable to arbitrary circuits. Furthermore, even though we have C
assumed an analog signal approach by employing the Laplace transforma-
tion for the time variation, the technique is extendible to the class of
digital circuits known as linear sequential circuits through the description
of system dynamics in an abstract extension field [107]. However, this
simple case is adequate to illustrate the major points just discussed. _

The quantity (sl - A - FCB) - l = S- 1 plays the conceptual role of a re-
solvent for the system and the zeros of det(S) define the various modes of
operation. Since B and C are diagonal, any deviation of the system
response from that defined by A must arise.through the structure of F. For
example, if we consider that the system is logically connected, i.e., v, is
connected only to zi, j < i, then F has elements only in the lower triangle
below the main diagonal. Since A is diagonal, F does not modify the
modes determined by A. i.e., det(S) = det(sl - A). Only when F has
entries across the main diagonal does this change. For example, if v, -

:,_, then F has entries along the diagonal just below the main diagonal. If,
however, the last stage is fed back to the first, an entry appears in the -

upper right corner of F and one new mode is generated, the collective
ring-oscillator mode.

In general, the connection function F can be divided into two parts. F,
and F,. where F, is the portion of F that represents the desired metalliza-
tions. i.e.. the designed architectural circuit yielding

S = sl - A - FCB. (124)

Then. F: represents the parasitic interactions (the parasitic device-device I
couplings) that arise from the line-to-line coupling capacitance, for ex- I
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ample. Thus, a new resolvent S2,

S, = St - FCB, (125)

arises with a new set of eigenmodes given by det(St). Thus, the structure
of the system is altered in the presence of Fs. As F2 depends on the states
of U (voltages, for example) as well as the inputs G, it is entirely conceiv-
able that the system is now strongly nonlinear. In large-scale systems,
where sizes are more than I /tm in scale, F2 may reasonably be assumed
to be negligible. In future VLSI and ULSI systems of submicron dimen-
sions, this is no longer the case, and the presence of F, will have to be ac-
counted for in design.

It is clear from the preceding discussion that the structure of the con-
nection function is instrumental in determining the collective modes of
system operation. Moreover, the connections need not be the deliberately
wired interactions but must include the parametric device-device interac-
tions that can occur in arrays of small devices. Such interactions could
occur, for example, from capacitative coupling, charge spill-over, or po-
tential barier lowering, such as is present in subthreshold currents due to
drain-induced barrier lowering [108]. Finally, if the connection matrix F is
functionally dependent on the state variables or control signals, i.e., F =
F(U,G), then a nonlinear interaction is possible that can lead to synergetic
restructuring of the system function. It can be stated that the general re-
suits presented in this simple example have been known for some time.
However, the importance of device-device correlation-interaction in
dense arrays lies in the role this essentially parasitic long-range inter-
action can play in restructuring F and hence the system dynamics. Es-
sentially. F can be split into design and parasitic fractions. This is the
principal point of the present discussion; changes in F due to device-de-
vice interactions can lead to a restructuring of F and, therefore, to a
restructuring of the entire system dynamics. Since these interactions are
principally expected to be nonlinear, synergetic effects can be expected
in the system dynam.,'ics.

V. DIFFUSION

A. Introduction

One of the most fundamental parameters required for modeling semi-
conductor devices i- the diffusion coefficient D(/:.cu). where F is the elec-
tric field and w the frequencyv. Not Only is the ditttsion coeflicient n S

t LA
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sary for evaluating operating and high-frequency characteristics, it pro-
vides a fundamental characterization of velocity fluctuations in the
system and their contribution to noise in the device (I 11 ,112]. If diffusion
is relatively well understood for low fields, this situation does not carry
over to the case of high electric fields (112]. The general case for high-field
transport in semiconductors differs in that relaxation of the velocity fluc-
tuations is to a nonequilibrium steady state [ 113-115], and the process is
nonlinear (116,117].

Diffusion is a general result of the Brownian motion of the carriers, and 0
early work centered on the calculation of the mean square displacement
of the carriers. This led to the Einstein relation for a free particle (118]:

D = lim ((Ax)y)/2t. (126)

This form has been utilized considerably in studies of Brownian motion in
many systems, as is apparent from the many review articles and original
papers (56; 60; 111, p. 415; 113; 119-125]. On the other hand, it has also
been suggested that the mean square displacement is related to D through
the derivative

D =d/dt((A)2), (127)

and this form has also found widespread use [ 114,126,127]. In the steady
state, however, in both equilibrium and nonequilibrium situations,
((r)' ) =- t for long times. Thus, both Eq. (126) and (127) give the same
result for D [128]). In this regime, we also overlook the long-time tails
that are observed in some hydrodynamic systems (127,128]. For short 0
times, however, differences can arise between Eqs. (126) and (127). We
shall return to this later.

B. Diffusion Formalism

We shall begin with a brief review of the formal theory of generalized
diffusion and mobility. For the present purposes, we shall neglect the
influence of magnetic fields and assume that the electric field F(x,r) is a
slowly varying function of position when compared to the spatial extant of
the de Broglie wavelength or to the radius of the collision sphere [88]. '
Transport in a medium that is macroscopically homogeneous with respect
to scattering centers is then described by a kinetic transport equation of
the form

"l128)

Ihit no(t ai rtuk cneraii re-,ult. since non-G.aus'tjn. flonf-Makva d%~ILV~f iffusion is
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where I = eF/m*. For Boltzmann-Bloch transportf is the usual distri-
bution function defined over velocity-position phase space (we are
assuming a simple, parabolic, isotropic band so that v is interchangeable
with Ii k/m*. although the Monte Carlo calculations of the next section as-
sume the proper nonparabolic band structure) and C is the collision opera-
tor, which is independent of space, time, and electric field but is velocity
dependent. If the field F is a rapidly varying field of very short wave-
length, the driving term 9 - af/av requires modification (88, p. 126; 96].

The first integral of Eq. (128) yields the particle-continuity equation

8NiX, - V - d 3 v vf(v,x,t), (129)

where

n(x,f) = d 3 Vf(v,x,t). (130)

Equation (129) may be given the form of the traditional phenomenological
semiconductor equation by employing the formal causal solution to (128)
using the collision operator to form an integrating factor. The result is

fti'xv) = fir - f d7- exp [- f d-,' (('

x V V + 'a f(v,x,r), (131)

where the transient term is

A, = exp f d C(7)1 f(v,x,O). (132)

The transient term will be ignored for now, but we should pointed out that
it % ill have an important role in transport on short time scales, such as for
ballistic transport or in very short channel devices. Inserting Eq. (131)
into (129) gives, for the classical case,

:,dt t p(-t!, t) -f • J)x.t). (133)
J, (x.) = [ x.t )) : ( x.)] I d , - n (x.t)jA,, (x.t)F , ( x.t). (1 34)

where the generalized diffusion and mobility terms are defined by

),,.(x.t = - 17 d ' I. I e\p1 - - ( 'j %X~ ) (135)

1, .\ ( -(' - H 6

,,., ,,.
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Although these results superficially appear reminiscent of classical diffu-
sion and Doob's theorem [130], Eqs. (131)-(136) provide a rigorous com-
prehensive formulation of the semiconductor equations for the descrip-
tion of diffusion and device modeling. It should be noted that, in general.
the generalized mobility and diffusion do not admit of an Einstein relation
[ 117]. except for systems close to thermal equilibrium. Because of the
complexity of the collision operator, or, more properly, the resolvent
(C" + s)-' (where s is the Laplace transform variable), it transpires that ex-
pressions (135) and (136) are not trivial to evaluate, even if the exact solu-
tion offAv,x,t) is known. As with other nonlinear systems, expansions can
be made in order to approximate low-order corrections to the Fokker- 0
Planck equation [116]. The quantum case is similar but involves nonlocal
diffusion and mobility densities. It will be discussed elsewhere.

Equations (135) and (136) are formally of the correlation-function-type
and constitute a more proper definition of the diffusion coefficient itself
[60,137]. For longitudinal diffusion, it may then be shown that e

D(t) = J, dT OV~), (137)

where 4)'(7) is the reduced velocity-autocorrelation function. On the other
hand, we can multiply Eq. (133) by x2 and integrate over all space to ob-
tain an expression for D(t). This relation is then conveniently compared
with Eq. (137) in the Laplace domain to yield

V'(s) = s L dv v[( + s]-'vf(v,s)/N,

where f(v,) is the velocity-distribution function (normalized to N) th' 0
satisfies

and r the reduced v elocity. Equation (138) relates V,'(s) to ),, i. the lon.!
tudinal diffusion coefficient as defined by Eq. (135). The appearance o,.

the resolvent (W - s-' is noteworthy.

C. Correlation Functions for Hot Electrons
-S!

The fluctuation response is. in general. complicated be,.u,,e oft r
many physical processes involved, but the velocity fluctu.,ion can t

considered as ha' ini two main contributions. r v() 1= t +

The first of these. u. is the velocity luctuation arising from a fluctuati,,
in carrier energy ' = u(E + AE) - ti(E) and the second. . an,,es fro.
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velocity fluctuations about u' (117.132]. These various factors can be ob-

served by studying, not the diffusion coefficient itself, but rather the

velocity autocorrelation function 4'(t), which is the inverse Fourier-

cosine transform of D(Fw). If we define O() as

.0(0) = ([v(1 + to) - (v)][v(to) - ()]), (140)

then it is found that, for high electric fields, 0'(t) decreases initially as an

exponential, becomes negative, passes through a minimum, and relaxes

finally to zero I 17]. This process is basically related to the fact that, in

general, energy relaxation is slower than momentum relaxation; and this

behavior can be expected to occur via the same processes that lead, for

example, to velocity overshoot [133]. Such general behavior was observed

in the recent work of Fauquemberque el al. [112] but was not adequately

explained. We should remark here that such behavior for V'(t) is also

found generally in hydrodynamic systems [ 129]. The detailed behavior of

0'(t) assumes more than academic interest as semiconductor devices

begin to assume submicron dimensions. In Si, for example, the time dura-

tion of -0'(r) can be of the order of 1 psec, so as channel lengths drop

below, say, 0.1 Mum, correlated electron motion and enhanced noise in the

devices can be expected to occur.
In general, the diffusion coefficient D(iw,F) depends on the velocity

fluctuations in the electron system and is related to the noise spectral den-

sity S w() associated with these fluctuations. These are related as (for

longitudinal diffusion)

D(o,F) 0 '(7) COS(,) d7

4 fox(141)

((r + t) - (v)][v(t) - (v)]) cos(&,) r.

where all velocities are understood to be longitudinal. The principal diffi-

culty in calculating transport parameters, particularly 4h'(t), in these

systems lies in the complicated energy dependence of the many scattering B

processes. In the past few years, however, ensemble Monte Carlo tech-

niques have been developed that can be used to calculate these transport

parameters with high resolution. As developed by Lebowhol and Price

[134) and subsequently used by Ferry and Barker [53.135]. the ensemble

Monte Carlo technique is a hybrid method in which an ensemble of elec- 0

trons is adopted. This ensemble is composed of N electrons, with vani-

ables {Rj. i = 1.2. N. where the set R, = {k,.x. } includes all

necessary descriptors of each electron's state. At each time step. all R,

are calculated by a Monte Carlo process, and the set [Rd} is treated as an
ensemble evolvine in time. The ensemble Monte Carlo method has advan-

S W0
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tages over the normal Monte Carlo technique in that an ensemble-
distribution function exists and evolves with (R,). Variables such as veloc-
ity or position are calculated from an ensemble average over {R} at each
time step and the variance is controlled by a sufficiently large value for N.
One should be aware, however, of the vagaries of stochastic simulations
on a computer, and we have used a variety of fields, number of electrons,
and seeds for the random number generators without affecting these re-
sults. In the calculations reported here, a value of N = 2500 was used.
This value is sufficiently large to give high-resolution results for the tran-
sient dynamic response of the electrons to a high electric field [55,135], for
example. Thus the method is capable of yielding good results for the
transport characteristics.

The ensemble Monte Carlo method was used to calculate the correla-
tion function in Si for the total velocity, 0(t) = (v(t + to)v(to)) = 0'(t) + 0
(v)2 (all calculations shown in the figures have 0(t) normalized to (0')).I
The ensemble of electrons was initialized as a Maxwellian at the lattice
temperature 300 K and was assumed to reside at x = 0 at t = 0. A homo-
geneous electric field was applied at t = 0, and the ensemble allowed to
evolve in time. After a reasonable period of time, the ensemble was in 0
pseudoequilibrium with the field and had a steady drift velocity.' After
this pseudoequilibrium was achieved, the longitudinal velocity autocorre-
lation function 4 (t) = (v(to + t)V(to)) was calculated for several initial
times to. The stationarity of the system was, therefore, verified as well,
and the averaging process was carried out over the ensemble as well as
over various initial times. In Fig. 47 is shown the variation of 0(t) as a
function of time t. for several values of the electric field. The initial fall of
d(t) is primarily due to momentum relaxation, with the local minimum and
subsequent rise due to energy relaxation as suggested by Price [117. The
error bars indicate the spread of data points from the calculations and
averaging procedures.

The lowest field in Fig. 47, 10 kV/cm, lies below the knee of the
velocity-field curve and does not really correspond to hot electrons. In
this case, there is no hint ofa negative-going portion [where 6 (t) < < (V) 2 ,
the steady-state result]. There is evidence. however, of a tailing behavior

The use of6lt). rather than the more normal 6'trl. was adopted as this alloyw s log-log or

semilog plots to be used ,ithout zero-crossing complications. The tw o are. of course. iden-
tical for equilibrium case. tut the second equality follows if the proce.,s is at least ',ide-

sense stationary. The latter i, not a foregone conclusion in nonlinear processes (j and must

be checked in each case. As dfiscussed in the tet. this as done and calculations usine either
6'(t) or 6(t) were found to agree. I-

' h i) found, for earnple. that at 25 kV/cni. the transient and oershoot veli, effects

ha.e decayed in les, than i0 pec.

. -
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away from the initial exponential. This behavior is well developed in Fig.
47b, for 25 kV/cm. It is clear from Fig. 47b that the initial decay, the
momentum-relaxation portion, deviates substantially from an exponential
for times greater than about 0. 1 pscc. and it is evident that although 4Q)
decays initially as an exponential, it deviates noticeably from this behav-
ior at long times and begins to decay as t312 . This behavior differs from
that reported by Fauquemberque et al. [112] but appears to be intrinsic to
the momentum- relaxation process (136). At still higher electric fields, this
tailing behavior is washed out because of the much faster energy-
relaxation process.

The initial exponential decay portion is significant. The time constant of
this portion of the decay of 0i(t) is closely related to and slightly larger
than the mome ntum- relaxation time T associated with the chordal mobil-
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Fig. 47d. Field at 100 kV/cm.

lty U~=Ld/F, rather than the differential mobility dud/dE (here we define
the effective or average -;rm =m>/Ae). The latter quantity has been
suggested as the appropriate quantity for longitudinal diffusion [I I I). At
25 kV/cm, the velocity is becoming very nearly saturated, so that the dif-
ferential mobility is more than an order of magnitude smaller than the
chordal mobility. This difference is readily distinguished from the data in
Fig. 47. The decay of 4(t) ==exp(- r/T0O) and at 25 k%/cm. for example, Is
best fit w ith a 70 of 7 x 10 "~ sec , w hile 7 5 . x 10 -11 sec. T he results%of the decay constant of the exponential portion of 4 (r being slightly
larger than -,appears to be a general result, as It %kas checked at several
other values of electric field. Van Kampen ( 116] has suggested such a dif-
ference would occur as a general result of nonlinear relaxation. If rfl)
decays as exp( - tm-,), he suggests that a fully nonlinear treatment ot
noise would have the correlation function decay with a characteristic time

7= 7,,/(lI - ,). where 4E I l.5(0t)/(vE:). This gives 7, 6.8 x 10"~ se,:
at 25 kV/cm. for the 7m Just given, which is within the accuracy of the

40
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Fig. 48. The deviation of r. from-r, for Si at 300 K. The velocity-autocorrelation function
6M decreases initially as exp(-t/70). Although this initial fall corresponds to momentum

relaxation, r. > r.. .

present calculations. However, this correction does not show the explicit,.
field dependence Of 70/7,,. Both (V)2" and ( V2) can be expected to increase
(almost quadratically) with F until saturation. Then (V)2 should become l
independent of F. This would imply a reduction of E. It is observed. how-

ever, that E increases with F. In Fig. 48. we plot the variation Of to/,,/7 0,

with electric field. It is observed that -,0/rrm Increases with the field, ,

although not quite linearly.
In Fig. 49, the Laplace transform and Fourier cosine transform of (b'(t)

are shown for a field of 25 kV/cm. Contrary to linear transport. these
functions are not simple. monotonically decreasing functions for large w
and s. Rather, thev exhibit peaks at high frequency. The oigin of these
peaks lies in the enhanced high-frequiency conductivity [8S. p. 126) 11n, 4''

regions wvhere the energy-relaxation process can no longer follow the ac .,

field. Thus. these peaks have their origin in the same processes that lead ,,
to velocity overshoot. The oscillations in S,(ow) at high frequency appear ,'_
to be related to the oscillations at long time on 6'Mt. While these oscilla- % Q

.L'.-

lions may not be real. their pre, ence and the shape of S,(oil has also been ]

observed by Grondin in GaAs (137). From this figure. it Is apparent that
enhanced noise %kill appear in SI devices at frequencies tbo~e - 10"' Hz
a nd that correlated carrier motion can be expected for times on the order

of I psec.
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Approaches such as this can be used to calculate the diffusion coeffi-
cient as well, through Eq. (141) for wj --+ 0. This has been done theoreti-
cally and compared with experiments by the group in Modena [(138]. The
results are shown in Fig. 50. The curve with or = 0.5 is the preferred
nonparabolicity-corrected curve for Si. The agreement with experiment is 7
good, but not great.. Part of the difference is in the assumption that the
packet of electrons diffuses as a Gaussian, which is not a valid assump-
tion.

The spatial distribution shows strikingly non-Gaussian behavior. In
Fig. 51a, we illustrate n(x) normalized to a Gaussian with the same value
of [((Ax)2)]1" (i.e., same o- values) for 10 kV/cm. When compared to the

(0)0

Fig. 51. The spatial distriution function nCx) normalized to it Gauisian for (a) 10 kY/'cm
and (h) 100 kV cm for Si at 300 K. The noni-Gaussian nature is di ,cused in the (ext.
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Gaussian. we find n(x) truncated in the tail region. This probably arises
fron the fact that the electrons in the tail have much higher energy and get
hot faster. Once into the velocity -saturation region (F -50 kV/cm), a
Gaussian again appears: but at higher fields, there are indications that the
tailing is reversed. In Fig. 51b, we illustrate this by showing n(.0 for 100
kV/crn. At this field, we are approaching breakdokn, and there are a sig-
nificant number of "'luck\' electrons t77] in the tail of tr(.). These vania-
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tions agree with the trends seen in the data of Fig. 50 and may be the
cause for the lack of agreement.

D. Transient Diffusion

In recent years, much interest has centered on the transient dynamic
response of electrons, especially as it impacts carrier transport through
small spatial regions in which the electric field is high. In particular, in the
pinch-off region of the channel in a field-effect transistor, the carriers
move by drift and diffusion in a very high electric field. Considerable
interest has centered on the velocity response, especially that of the over-
shoot velocity [3,38,39]. The transient response in these high-field condi-
tions is significant in that carriers may completely transit the region prior
to obtaining a steady-state high-field distribution. Thus, the transient
velocity can be more significant than the steady-state velocity. Consider-
ably less attention has been focused on the transient diffusion that also
occurs under these conditions. The lack of attention paid to transient dif-
fusion is easily understood when it is recognized that diffusion is actually
a process depending on velocity correlation (139], and the relationship
between diffusion and drift, as expressed by the Einstein relation, is a
steady-state (stationary distribution) relation [122). The problem is com-
plicated by the fact that the random-walk equations governing diffusion
do not reduce to normal Fick's law behavior on time scales comparable to
relaxation processes [122], a result of the general non-Markovian nature
of transport on these time scales [62]. The purpose of this section will be
to highlight some of these problems and to illustrate them with results cal-
culated by the ensemble Monte Carlo technique.

Diffusion is related to the spatial spreading of an ensemble of carriers
with time. as the ensemble responds to both applied drift forces and A
random forces, such as are generated by collisions. In general. the diffu-
sion coefficient is related to the ensemble position distribution through
Eq. (126). In the case of a transient dynamic response. however, the
problem is more complicated. A Fokker-Plank equation can be generated .0., .
whose solution is the transition probability for a particle at x0 .t., to transi-
tion to .x.r. On the short-time scale over which relaxation processes occur.
this equation does not reduce to the normal diffusion equation (130]. The
problem lies in the fact that the Langevin equation, from which the former
equation is obtained, is second order in position. While it remains Marko-
vian in phase space. 'ts projection onto real space does not. e\cept for
long times \,hen the enemble is stationary. Thus Eq. (126) must be cor- .
rected for the nonlocal (in time) behavior. Then [122.1301.

((A(2(t-)/yI - (I/71[I - ,' " . I Wi
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where I/y is the relaxation time and (v2 ) the mean squared velocity about
the mean."' From a fluctuation-dissipation theorem, we generally define
D = (v2)/y. If we use Eq. (126), we find

((AXx) 2)(2t= 211 - (I - e- ]/7}" 143

If, however, we use Eq. (127), then

o=d((Ax))dt (14
2(1 - e-'C) (144)

The difference in these two is, of course, in the denominator. The denomi-
nator of (143) goes as 12 for small t and that of (144) goes as t plus what-
ever variation comes from the derivative term. We cannot say which is
correct, but if ((Ax)2) varied as t2 for small t, both would give a constant
D. In fact, this does not occur for the general nonlinear relaxation to a
nonequilibrium steady state.

In a stationary distribution, the diffusion coefficient can be related to a
velocity-correlation function from which the mobility is also derived. This
leads to the classical Einstein relation, which, for a nondegenerate semi-
conductor, is

D = tkoT,/e, (145)

where 1L and T, are, respectively, the chordal mobility and electron tem-
perature at a particular electric field. In general, the Einstein relation does
not hold for hot electrons, and it is of interest to know how far this result
differs from Eqs. (126) or (143) in the case of the transient dynamic
response.

We have carried out calculations for the longitudinal diffusion by the
ensern.le Monte Carlo process. In this case, an ensemble of 101 electrons
is subjected to transport via a Monte Carlo technique. At each time step,
the tr.,aport parameters are obtained by an ensemble average. The time
evolution of these ensemble averages yields the time evolution of the
transport parameters. This technique has previously been shown to yield
ecellen, argeement for the transport coefficients and to agree kell with
p~irainiczcri[,,d distribution approaches. which explicitly define selected
coelticiev In the present calculations, the carrier ensemble was as-
sumcd it have been injected in GaAs at x = 0 at t = 0. i.e.. as a 6-
tunc'ti:: enInlble. The spread of the distribution and its drift under an
applicd homogeneous electric field of 25 kV/cm was calculated. The
kincta, "emperature (TI. = 300 K) and drift velocity were also calculated

k IfL, - L 4 : ' I ;,, d t)I t II r l .11 IF '! 1.1 t . ' 1 o .qI i I'l I t.it' I

'. - : ' ; " " "- II 'I," : , - . I', .:,' ' IIF I '" ' , , ,, 1
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Fig. 52. Diffusion coefficients calculated from Eqs. (126). (143). and (145) (curves a-c.
respectively) for an ensemble oftcarriers injected into GaAs at x = 0. t = 0. T = 300 K. at 25
kV/cm.

during the calculation. Gallium arsenide was chosen because of the com-
plications arising from intervalley transfer and negative differential con-
ductivity. In such material, the transient dynamic response is dominated
by the differential repopulation between nonequivalent valleys [72,140].
The diffusion coefficient was calculated by each of Eqs. (126), (143), and o
(145), and the results are shown in Fig. 52. In using (145). the mobility p. is
taken as Ud/F and is not a differential mobility, a definition in keeping with
the correlation-function approach. If a derivative approach [Eq. (127)]
were used, the results would be closer to those of (145) on the rising por-
tion of the response (t < 0.2 psec). However, the derivative approach
would give a negative diffusion during the falling portion of the curve, a
result not at all in keeping with (145), although understandable on physical
terms. In this region. the carrier ensemble appears to actually be con-
tractingz as the faster, more energetic carriers transfer to the heavy mass
satellite valleys. Within the accuracy of the Monte Carlo method, all three
approaches converge as the ensemble approaches a stationary distfibu-
tion in phase space.

APPENDIX A. DERIVATION OF THE BALANCE EQUATIONS

I he balance equations given in Section III are obtained by taking the
moments of the Boltzmann transport equation. assuming that the distnbu-

. ,. . . , , , - *• ., - -w " .
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tion function in each valley is a drifted Maxwellian. Thus

f,(k) = Cj exp( -fil(k - kdi)2/2mjkBTd), (A-I1)

where hk4, = mjuvj is the average drift momentum of the electron gas, C aI
constant for normalization purposes, and Tej the electron temperature,
with the subscript j referrng to the jth valley. From Eq. (A-I), it follows
that fj(E) -fjo(E) + fj,(E). with

f,..dE) = Cj exp(- ElkBTCj) (A-2)

h and

fn,(E) = V(MiVdjr/kBTe,)fjO(E). (A-3)

The actual moments themselves are complicated by the fact that the semi-
conductor conduction band is describable by a multivalley structure,
which often comprises nonequivalent valley sets, and, hence, is a coupled
system. We must also account for the repopulation effects that can occur.

The Boltzmann transport equation is given as

-y + Vf + e F -Vjf I ~W(p,p')f(p') - W(p',p)f(p)}. (A-4)

In Eq. (A-4). W(p,p') is the scattering rate from state p' to state p. In the
following, we shall ignore the inhomogeneity term v -Vf, although it can
readily be incorporated. We define the average of O(p) in the ith valley as

b (6(p,))i = OJ~(p)f.(p) dp. (A-5)

To begin, we multiply Eq. (A-4) by an arbitrary function of (pj) assum-
ing 6(p,) and f,(p,) represent the ith valley (or set of equivalent valleys in

this case). Then, integrating over p, yields

W>p { p p,(P.) - W~(pI . p,).f P,)]

+ 6 .. p' ~,)-t(~ .j 4 p,). (A-61

11crc %k~e ha, e separaie.1 the intrav'alley (%k ith equivalent intervalley) and
i i o)n cq t)i I e Wnt i nd vai Icon!i i h t io t s o th11e s cat t e ring p roc e sse s. WVhen.,

'!L'2I
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tion over pj:) can be treated by a simple change of variables and this term
becomes

where 
n~'*p)j 

A7

F,0(pi) Mp'[41 - 44 .(A-8)

If =C, this term vanishes and, as expected, makes no contribution to a
density-balance equation.

The nonequivalent intervalley terms can be written as

- f(p')4k~f)X W(pi, pj')

Z fp)(pi) I W(p"pi), (A-9)

where we have used the energy-conserving 8 function inherent in WMp, ,pj)
to define the renormalized momentum fj through the relation

46 _t hw /f;n7 - hwo, (A-10)

so that f, is a function of p,'. Introducing the scattering rate as

r(p) E M Wp'p), (A-Il1)

Eq. (A-8) becomes

B3 inierilng the details of the various scattering processes. the indi% idual
momient equations can he readily Set uip. However, because of the Multi-
rphicit% of scatterers. the individual equations are quite complicated. We
,h~ill niot delve deeper into their struc:ture here.

APPENDIX B. THE WIGNER DISTRIBUTION FUNCTION

(..i-ssical iran~porl ph% \ics IN bas~ed On (he concept of a probahllr\ dis
abuit kion function. wkhich -,defined 0'.er the phase ,patce oit the rki-it ion

1.< 0tflenta. o1 all [the pai c('I1 ctsnemed Th Imelt fc xo
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sical expectation value of any physical observable, which is a function of
position and momentum, is obtained by integrating the product of the
observable and the distribution function over all of phase space.In the quantum formulation of transport physics, the concept of a

phase-space distribution function is not possible inasmuch as the noncom-
mutation of the position and momentum operators (the Heisenberg uncer-
tainty principle) precludes the precise specification of a point in phase
space. However, within the matrix formulation of quantum mechanics, it
is possible to construct a "probability" density matrix, which is often in-
terpreted as the analog of the classical distribution function in phase
space. The time rate of change of this probability density matrix is gov-
erned by the quantum analog of the Liouville equation. Moreover, the
expectation value of a physical observable is obtained by taking the (race
of the matrix, which is the product of the probability density matrix and
the matrix that corresponds to the physical observable.

There is yet another approach to the formulation of quantum transport
based on the construction of the Wigner distribution function [100]. As we
shall show, this distribution function has no simple interpretation in the
sense of probability theory but, in lieu of its special properties, can be used
directly for calculating expectation values of observables in a manner
quite analogous to that of classical theory, i.e., by integrating the product
of the observable and the Wigner distribution function over all phase
space.

In this section we shall review the salient features of the Wigner distri-
bution function. Although the Wigner function is generally defined in
terms of all the generalized coordinates and momenta of the system in
question as

f . y " "... d
I %7 + ,X.

X 1d v g . . .v exp •)

VI [ip~y1 .. . . + B-I)0

Se shall discuss the properties of the Wigner function in terms of a single
coordinate and monienturn. In this case, we let

,-,, <2. , f, -1 1 - 1 , .-
here 4,(0 refer- to the state of the system in the coordinate represen-

lhe dittributton function of Eq. (13-2) has interesti n! propertlic ii, that

L'
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the integration of this function over all momenta leads to the probability
density in real space; conversely, the integration of this function over all
coordinates leads to the probability density in momentum space. In math-
ematical terms.

f Pw(x,p) dp = **(x)4,(x) (B-3a)

and

f P(x,p) dx = 0*(p)4p), (B-3b) 0

where

0,(p),, 2 : =xp (, ) dx.

It follows immediately from Eq. (B-3) that, for an observable F(i,), C
which is either a function of momentum operator alone, of position opera-
tor alone, or of any additive combination therein, the expectation value of
the observable is given by

(F) = ff FPw(x,p) dx dp, (B-4)

which is analogous to the classical expression for the average value.
Herein lies the interesting aspect of the Wigner distribution function: the
result of Eq. (B-4) suggests that it is possible to transfer many of the re-
suits of classical transport theory into quantum transport theory by sim-
ply replacing the classical distribution function by the Wigner distribution
function. However, unlike the density matrix, the Wigner distribution
function itself cannot be viewed as the quantum analog of the classical
distribution function because it is generally nonpositive definite and non-
unique [P,,(x,p) of Eq. (B-2) is not the only bilinear expression in _% that
satisfies Eq. (B-3)].

Further resemblance of the Wigner distribution function to the classical
distribution function is apparent by examining the equation of time e% olu-
tion for P,(x.p). Upon assuming that i(x) in Eq. (B-2) satisfie. the
Schrodinger equation for a system with Hamiltonian H = (p /2,,:) +
V(x). it can be readily shown that Pw(x,p) satisfies the equation

a P%% ap 1.
+, L 0  = 0. 'B-5)

where

a P = (2 /1 I)" 0 a B-6a)12n + )). ..."
n- --

,I IN 116 1 II II 6 ' 16 11 L 1
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Alternately, 0- Pw can be expressed as

o- P= - [sin 7 h -- J Vx)Pw(x,p), (B-6b)

where it is understood that the position gradient operates only on the po-
tential energy V(x). It is evident that in the limit h - 0, 0- Pw in Eqs.
(B-6) becomes

0 W aV aPw (B-7)o-,. a x ap , I;

so that Eq. (B-5) reduces to the classical continuity equation; it is also
clear that the dominant quantum correction to 0 - Pw is of order h2 , with
this term also having dependences on the third derivative of potential en-
ergy with respect to position and the third derivative of the Wigner distri-
bution function with respect to momentum.

The Wigner distribution function is derivable [109] from the Fourier in-
version of the expectation value with respect to state tp(x) of the operator
eXp[i(Tf5 + 0.c)] (here, x and p satisfy the commutation relation [i,,i) =
i). As such,

P,,-(X,p) = ff Cw(T,O) exp[-i(-p + Ox)] dr dO, (B-8a)

where

C,(r,O) = f tp*(x) exp[i(rTp + Ok)] p(x) dx (B-8b)

and the interval of integration is [-c,-] unless otherwise specified. In
order to show that the right side of Eq. (B-8a) is indeed the Wigner distri-
bution function as defined in Eq. (B-2), note from the Baker-Hausdorff
theorem (110] that exp[i(-/f + 6.i) can be rewritten as

eXPrit7,i + .i)] = exp(ir5) exp(iO.i) exp(.irj) (B-9)

in which case C,, -.O) of Eq. (B-8b) becomes

. exp- p (B-10)

% hich further reduces to

C(t -.1- 0) 6J(. - rhfe'6 'iP(. + 7h) JV. (B-I)

Thea. by inserting C,(.(.) of Eq. (B- 11) into the righ-hand side of Eq.

N_ vlv Wl
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(B-8a). integrating over the variable 0 by using the relation

Sexp iO(x' - x") do = 27r8(xr - xi)

and letting T = y/h. the desired result is obtained.
The method just outlined for arriving at the Wigner distribution func-

tion is based on the notion of a characteristic function. The characteristic
function of an observable A with respect to state Iq') (here, the Dirac no-
tation is utilized for purposes of generality) is defined as

CA(f) = (oPexp(ifA)lt), (B- 12)

where f is a real parameter. Assuming A to possess an eigenvalue spec-
trum given AIA') = A'IA'), C,(f) can be evaluated in the A' represen-
tation as

CA(f) = f dA' f dA" (,IA')(A'lexp(ifA)IA)(Au1,) (B-13) 0

Since (A'lexp(iptA") = exp(ifA') 8(A' - A") in the A' representation,
CA(f) in Eq. (B-13) reduces to

C,(4) = f dA' exp(ifA')Ji.,J2 , (B-14) 0

where =I-,l =(t)1-  P(A'), the probability distribution function for
measuring A' in state I'1). Hence, the characteristic function for A is the
Fourier transform of the probability distribution function P(A'). Subse-
quent inversion of Eq. (B-14) leads to

P(A') = C(f) exp(- if.A') d.f. (13-15)

The Wigner distribution function was derived by taking the Fourier
transform of the characteristic function for exp[i(7j) + 0.il. In view of the
connection between the probability distribution function and the charac-
teristic function for a given observable, this approach seems to be a natu-
ral way of obtaining a distribution function for momentum and position.
Unfortunately. the noncommutative nature of the twko observables
destroys the convenient probability interpretation of the characteristic
ft inction implicit in Eq. (B-15).

In order to demonstrate this point, assume the characteristic function of
two noncommuting observables. A and B, to be

('4I , .f,) = (,ilexp~i(e,, 6,,11].,) (3-16)

Obsera les A and B are assumed to ha,.e eige[1value ,pectra

t-..1
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AlA') A #A#). (B3- 1a)

hBB) B'IB#) (B-Il7b)

and are chosen so that [A,[A,B]= [B,[A,B]1 = 0. This assumption is im-
posed so that the identity

exp~i(f A + f2B)] = exp(if,A) eXPUk28) exp(-i 2 A,BJ) (13-18)

may be used.
Inserting Eq. (B-18) into Eq. (B-16), obtaining the matrix elements of

exp(if A) in the A' representation and exp(if 2B) in the B' representation,
and assuming [A,b] is a C number, we obtain

CAB(fl,fl) exp(-ffif2 [A,h]) fdAM f dB' exp[i(f A' + f2B')]
-' (13-19)

We define F(A',B'), a generalized Wigner distribution function, to be

F(A',B') = (qilA')(A'IB')(B'40) (B-20)

so that

x exp[-i(fA' + f 2B')]. (B-2 1)

It is evident from Eqs. (B-20)-(B-21) that

j FtA' ,B') MA = (Bljj)12  2 ,-- d 2 CA1(O.f 2) exp(-if2.B') (B-?2a)

and

F(A .8) dB' =I(1A'11)P -2 f d, C.,,(cl.0) ex\p(-i~1.4'). (B-22b)

Thus. Eq. (B-21) establishes the relationship between the characteristic

Wiene? distribution function. The generalized distribution function has
the e* - ntial properties of the conventional Wigner function in that an in-
teizration of the veneralized function over the ecigenvalue spectrum of one%
kihser%,ible leads to the probability density in the canonically conjugMate
obserx.ble [Eqs. (13-22)]. Hiowever, there is no simple probability inter-
pretation of Ff4.8B') in Eq. (B-21) because of the necessar\ overlap
bet~k e-1-- the states of the noncomimuting- observahle-v, lA and B.Ire mdeU

~'co-,0i ~ thAt i .4and 4)" have a1 Coiirior el of, eIuen1\ew C\10
teli A .Ih 1-ekduce 1k, 11he CA jj I dish i~jmlerj .fTIC1ioli lo: .1 Y
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ABSTRACT

Recent results concerning spatial and temporal transport in
submicron devices identify significant aspects of the role of
boundary conditions, scalint for suggestinz new materials, and struc-
tural device changes. These results are discussed as a means of
achieving high speed and hith frequency devices.

INTRODUCTION

There are several rece2: results concerning spatial and temporal I
zransport in submicron devi:es [-at are likely to have an impact
on the design of future hiz- frequencv sources. These results, wnich

emerge from .onte Carlo, a nc-entum -omen- equation solutions to tile
".'igner-Boltz-ann.' quantu. :rzn ort ecua::

63
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w+ v 2 (si )Cll (I)
at m x h 2s (T T))V(x)fw(x'p) (t)conl )

and the Boltzmann transport equation (BTE)

af+ P_2f+ af (2 (2)
at m a{)cola , (2)

identify crucial aspects of boundary conditions, the role of scaling
in choosing suitable materials, and the significance of alterations
in otherwise simple device structures for achieving high speeds.
These tovics are reviewed below. (It is noted: In equation (1) the
position gradient in the brackets operates only on the potential
energy, f is a single coordinate and momentum distribution function

w

fw (xp) = .hJfdyY* (x + -) IF (x - Y)eipy/h (3)

and '(x) represents the state of the system in the coordinate repre-
sentation).

SCATTERING MODIFICATIONS TO BALLISTIC TRANSPORT

Ballistic transport implies carrier transport unimpeded by inter-
actions (electrostatic, or otherwise) with other carriers, or with
scattering events. The extent to which scattering centers are sensed
by transiting electrons is therefore of significance. The first set
of calculation shown, Figure 1 (Ref. 2), represents scattering events
in GaAs for a collection of electrons entering a uniform field region
with an initial energy of approximately 0.30ev. Intervalley ;-L energy
separation for this Monte Carlo calculation is 0.33ev. It is seen
that, with the exception of very high fields, approximately 50% of the
carriers are unscattered over the first 500 A.

The velocity versus distance curves for this calculatic7 are dis-
played in Figure 2 (Ref 2), and it is seen that high speeds over use-
ful distances can be achieved even in regions where a high nber of
scattering events has occured. The optimum conditions for chis ap-
pear to require moderate fields, generally near the threshold field
for electron transfer, and moderate injection energies. The depend-
ence on the latter is displayed in figure 3 (Ref.2), where :he lowest
achievable velocities over a distance of 15000A are for entry elec-
trons n zero initiai velocity. It is also seen that an orrimum
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Figure 1. Percentage of unscattered electrons versus distance.
Entrance electrons have a finite energy. From reference
2, with permission.

entry energy exists; for energies near the r-L separation, scatter-
ing quickly reduces the net drift velocity. The optimum conditions
identified by these calculations imply that voltage control near
the entrance boundary aust be near 50mv.

The examples of Figures 1 through 3 are for uniform fields, and
carriers subject to sudden changes in field. Studies in which spatial
gradients accompany nonuniform fields are more recent, several of which
are considered at this !orkshop. One aspect is considered below.

SPATLAL ALND TPOAL TF_RNSIENTS

A relatively direcz %-a,, of handling spatial and temporal trans-
ients is through moments of the transport equations (1) and (2).
Little has been done wit' the moments to the Wigner - Boltzmann equa-
tion and the folloving deals exclusively with BTE moments. The
moments of the BTE for-. a.n infinite hierarchy of moment equations.
Each equation introduces a higher order moment not defined bvs the

II
1, t z
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02

0 Soo 4000M

figure 2. Velocity versus distance for electrons with a finite
entrance energy subject to a sudden change in electric
field. From reference 2, with permission.

given set of balance equations. The most coummon form of the balance
equations is obtained by assuming a distribution function of the
form

f =f.o - n i exp -{(u-v)_(4

for each species. 'ore generally (Ref. 4)

I a'5' r ~uau

%here it is inSisze- that the firs: tern in the expansion gives theI
correct local- values of density, velocity and energy. The coeffic-
ient.s in the a-ove expansion are iniversely proportional to density
an. are model deDendent. The first correction to the local equilib-

iun balance ~:a cnthe so-called hydrod-,namic approxim-it ion yields
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Figure 3. Velocity versus distance for electrons with varying en-
trance energies subject to a sudden change in electric
field. From reference 2, with permission.

i + (vin) -(---coll (6)

at i + t Coll(6

+ (v 1i)= -eni - grad n ko T. - +t p_ _ J+ -- coll (7)

a W- + v W. -en.F - 7 . v.n.kT. - div ' xv (8)?- ~ ~~ ~ 1" i ii o t i

L(aJ

+ div ( grad T) t coll

:,+ere P. n m~v , W = : -! +-  2  3 kT , -,
-ere P. = n.m v.~ +-.k.} o is a stress tensor

arising zrom nonunifor. v*-5city dikriutions, and < is the thermal
conductivity. Tbe stress term is dissipative in that when a nonuni-
form velocity distributi:-.n is impressed on an electron stream there
, il be reactive forces :ending to smooth them out. Dutailed informa-
tion regarding suitable .lues for these terms are not available, and
th-ev are regarded as phen.-.eological entries; they and their :.odifi-
cation by th, collision : r-S are t- be studied. Jr

~ .r -
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The boxed terms above represent contributions arising from the
nonspherical nature of the distribution function. The underlined
terms are ignored in the drift and diffusion approximation. Figure
4 shows the result of a solution to the balance equations for two
level transfer for a two-terminal device whose structure is receiving
considerable attention as an illustration of velocity overshoot. The
structure considered here consists of a low doped region LVlum
sandwiched between two regions of higher dooine concentration. The
structure is subject to a bias of i volt. Four interfaces are involved
but most attention Is focused on the two interior faces where signifi- a
cant gradients in field occur, all associated with differences be-
tween the background and mobile carrier density. The carrier con-
centration is displayed in figure 4c, for the case of injecting cathode
contacts (Ref. 4). It is seen that (a) significant charge injection
is present in the low doped region, and (b) electron transfer occurs
near the downstream+section of the low doped region and is significant
in the downstream N region. It is noted that the field dependence of
carrier density in the r valley, Nr(F) is not the same as that asso-
ciated with uniform field steady state values. Spatial gradients re-
sult in a spatial lag.

Also shown in figure 4c is the drift velocity of carriers in the
P-valley, and it is apparent that the carriers acquire speeds consid-
erably in excess of the steady state peak velocity of electrons in
GaAs. These velocities are not, however, much different in value than
those associated with r valley electrons under uniform field condi-
tions. The velocity shown in figure 4c is not, however the same as
the carrier velocity computed under uniform field conditions. The
velocities computed here include temperature as well as momentum
gradients, and are properly defined as the current flux/carrier

density. Thus, increased velocity here is often associated with de-
creased carrier density, through current continuity. The key to all
device design is that high velocities must be accompanied by only mar-
ginal transfer out of the high mobility section of the conduction
band. This will require device lengths shorter than the active region
of the device shown in this figure. (Modifications to this statement
arising from variations in material parameters are considered in
Ref. 4).

The calculations of figure _ show the situation where a high
carrier velocity occurs near the dow.-nstream edge of the low doped
region. Often high velocities are required near the upstream
boundary as indicated by figures I through 3. Figure 5 (Ref. 6)
shows a spatially decendent result for carriers subjected to a pre-
specified value of electric field. The calculation is for silicon and
the highest carrier velocities eccur near the O.4im boundary. An
accompanying plot of carrier density (Ref. 6, figure 9) shows the
lowest level of carrier density in the region of highest velocity.

(0

W.&-U % I% W J
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Figure 4C. Fractional population and central value velocity. (From
Ref. 4., with permission.)

Coupling the above results to the need for moderate fields for
high speed operation a useful multiterminal device very likely will
require the presence of a local moderate field region that "kicks"
electrons into high speed regions. The simplest high field in-
jecting region could come from local charge depletion or "notches"
(Fig. 6). Note that in Figure 6 the gate+is treated generically.
It could be a metal Schottky contact, a p AIGaAs layer, etc.

SCALING

In the absence of, or in concert with structural variatio-s in
devices it is also recessary to examine changes in a:erial parameters. S
The change in material paran eters should have as its goal high mobil-
ity and high characteristic velocities. Thornber (Ref. S) provided a
general set of guidelines for choosing material para-.eters through
an alteration of the scattering rates, one of whic-. ic duscussed below.

The collision -ern in the Boltzmann transport equation is

t,:
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Figure 5. Variation of carrier velocity in silicon for electrons

subject to the illustrated field profile. From Ref. 6
with permissio.

t,/coll J . ( ) (?:,) - f(p)(p,p')} (9)

where W(pp) is the total sca:erin rate from p to p'. Thornber
suggested several sc-i'-: n in the BTE, to alter the drift
velocitv.

0
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Figure 6. Schematic of a high energy injection region in a gated
submicron structure.

v= fd3pf/m 3f. (10)

The one illustrated below involves uniformly altering the scattering

rate by a constant r, and results in the following relation

vr(x,t,F) = v(rx,rt, F/r) (ii)

Where the right-hand side is the unscaled velocity. In this scaling
mobility is altered but saturated drift velocity is not.

A dramatic consequence of the effects of scaling is illustrated
below, but it is necessary to note that the possibility of relevant
material scaling over a broad range of electric field values is re-
mote. Rather, it is more likely to be appliable over a restricted
range of field values. This is illustrated for GaAs. For GaAs, over
a field range of approximately 3 - 15 kv/cm, intervalley r-L coupling
is a dominant scattering mechanism. Figure 7 shows the velocity field
characteristic for r-L-X ordering with three different values of :he
"-L deformaticn potential. All these valleys are taken as parabolic
with N =0, while all other -aterial parameters are those of Little-
john, et al. (Ref.9). (We note that similar values for material con-
stants yield differences betv-'een Monte Carlo and balance equation cal-
culations.) In -igure 7 the fields at points 1, 2 and 3 occur at :aluet
5.6 kv/cn, 8.2 kv,'cm and 12 '-v/cm. respectively. The dominant

valley total r7.2entum sca::ering rates are 4.78x!O12/sec., 7.32.,:102/,
sec., and !0.0xi¢--/sec., respectively. The ratios F/- are
1.!7xlO .kv-s! . 1.12x10 -- v-s/cm and l.20xlO-:'kv-s/cm, respec:-
:vely in general acreemrent .-:h the rule of Equation 1.

Figure 8 iiiustrates the consequences of uniform scaling on -.eoc-
izv overshoot. solid curve displays overshoot for a gallium e
arsenidc elee:- _:-bject tc - field of 27kv/cm (Ref. 10). The d-se-

77771
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0

ELECTRIC f4ELO I I

Figure 7. Steady state velocity versus field for r-L-X ordering as
obtained from balance equations. Different curves are for
different values of the deformation potential coupling
constant for intervalley r-L scattering.

(dotted) curve is a sketch of a scaled curve for r=2(r=o.5) and a
field of 54kv/cm (13.5kv/cm). For r=2, high overshoot velocities
occur over a short period of time and require high bias levels. By 0.
reducing r to values below 1.0 high overshoot velocities are retained
for a longer period of time and at lower values of field than for GaAs.
This result is highly significant insofar as it suggests higher transit
velocities for extended temporal scales, and indicates a direction of
material selection for high frequency sources.

GENERAL CONCLUSION

It has been known since 1969 that the compound semiconductors,
GaAs in particular, are theoretically capable of providing high fre-
quency, near 1OOGHZ oscillations. Overshoot has also been knoun since -

that time (Ref. 1i). The difficulty in attaining hizh frequency three-
terr-inal and so.etimes two-terminal operation has over the past decade
been attributed to inadequate contact regions (Ref. 12), material
preparation, etM. any of the high frequency proble-s were thought
to be reduced by coirnc to 4.7all dimensions, where in addition to
shortcr transit lengths th benefits of overshoot would emerge. Wh1ile
it is still too early to s:-te how these benefits can be implemented
in practice, it is clear t-at special contacts or inlection rep.ions

OWI
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Figure 8. Transient velocity characteristics for scaled and unscaled

scattering rates. Solid curve is from reference 10.

are required. It appears, therefore, that the 1969 questions as to

why devices are not operating closer to theoretical limits is still

valid today. The dual solution approaches of the last decade also
appear equally valid today, where the pursuit of novel device struc-
tures emphasizing the boundary role is continuing, while simultaneously
neL" naterial directions are sought.
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ABSTRACT

The size of expected future very-small devices will result in

their being strongly coupled to the environment in which they are
located. In this paper, we examine several of the limitations on the
device physics that can be expected to arise in these structures,
including the role of the environment and its effect on ballistic
transport. In addition, we look at submicron arrays of devices in
a lateral surface superlattice (LSSL) and examine transport in such
an LSSL through a Wigner function and Monte Carlo approach.

INTRODUCT ION

Many people have examined the limit tc which se.iconductor de-
vices can be scaled downwardl- . While s7a2ll devices in the range
0.1 - 0.3 Lam e length have been made 4, _roble-.s such as intercon-
nections, electromigration and thermomigra:ion cf metailization, and
power density .-7ithin the device strongly affect :he pctcking density

and device siae that can be achieved:. Ye:, no ,ne has evaluated the
operation and performance o: very-small se.iconductor devices, i.e.
those that can be conceived in the sub-0.1 _m size ran:ie, and the
interactions -irhin arrays o such deviceS. One reaszn for this is
that the tra::Spor[ w-ithin such a device cab.ot b- tr--&:ed in isolation.
Because of the size of such a very-s.nall d-:ice. it is coupled strongly
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to the environment in which it is located. The basic transport equa-
tions cannot be separated from their casual boundary conditions and
both of these factors must be modified to account for the influence
of the device environment6 . In previous work, some of us have pre-
sented a formalism to address this4 ,7, but this formalism remains
untried due to its inherent complexity. In the present work, we wish
to examine qualitatively several of the limitations on the device
physics that can be expected to arise in the very-small semiconductor
device, particularly with respect to the finiteness of source and
sink regions, contact regions and barriers, and the influence of these
latter quantities on the ballistic transport that may exist in the
device 8,9. In particular, we examine these effects through the use
of discrete area-preserving phase-space maps which display the char-
acteristics of transport in a generic device. In addition, we treat
the cooperative interactions that can arise in densely packed arrays
of devices.

BALLISTIC TRANSPORT

Potential barriers within the device can play a significant role

in the quantum ballistic transport of carriers through it. Such
barriers are found in very-small devices, for example, to confine
carriers to the active region 3 , and are an intimate part of devices
such as the planar-doped barrier transistor 0 , tunneling barrier de-
vices I , real-space transfer devices 12, or superlattice avalanche

photodiodes 13. When a barrier is present at the contact region, care
must be taken to adequately handle turning-point reflection of the
electrons from this barrier. Even when the electron has sufficient
energy to pass over the barrier, there is a well-known quantum mechan-
ical reflection at the barrier interface. If the potential barrier is
smooth, i.e. introduces a transition over many wavelengths, the re-
flection and wave function matching can be handled by well-known
approximation techniques such as the WKB approximation 1 4, in which
the potential barriers represent turning points for a near-classical
path. In the very-small device, however, the barriers are expected
to be sharp on the scale of the electron wavelength and care must be
exercised in matching wavefunctions and determining reflections. The
reflection problem is further complicated in real-space transfer de-
vices 12 due to the different band structure on either side of the

barrier. Here, additional terms arise due to the spatial variation
of the effective mass.

If the potential barriers are slowly varying on the scale of the
wave packet, the trajectories are largely those of the classical
motion. Even if this is not the case, as we expect for the very-small
device, nearly semiclassical trajectories can be expected if the var-

iation of the action is limited to a few low-order derivatives 15

In semi-classical systems, the phase space of the classical motion
forms a natural framework in which to examine problems such as these.

I! N,
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While classical one-dimensional transport appears to be basically
simple, there exists recent work that suggests that even this simple
problem contains a number of unexpected subtleties1 6 . In this paper,
we begin to investigate the role of barriers in submicron devices
through the use of such finite, area-preserving phase-space mappings
of classical dynamics. The use of such mappings reveals a variety
of complicated structure1 6' 17 , and has had recent success in explain-
ing the cause of excess noise in Josephson junction parametric amp-
lifiers16 ' 19. The results that we obtain indicate that if these
mappings are applicable to the VLSI scale, then present concepts of
submicron transport may require substantial generalization.

The types of subleties to which we are referring are best ill-
ustrated by Fig. 1. There, we are using an area-preserving mapping
of particle position (horizontal) and momentum (vertical) within a
device active region bounded by two Gaussiam potentials V(x) (over-
laid in the figure). In addition, an electric field has been applied. 8

P -

V,-

Figure 1. The phase-spac -'g mapping of r initial uniform distri-
but ion of elec rons in a generic very-small semiconductor
device. The ccntact regions ae represented by a twin-
gaussian poten 'al %V(x). The rzna direction is
Position while .he vertical c . .tion is :.on .tum.

• .:-.:i :4-:. .+::: :. ...... I; ,-.
.1., . , . :. ;..'.:.., ". . . . . - " - " .• " .- '. : - i '
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The canonical mappings are area-preserving since we are considering
a collisionless (conservative) system and looking at the ballistic
transport. The classical differential equations of motion are

aV(x)

ax

=+ p/M

and the discreet classical area-preserving maps are

Pn+l = Pn - Tx I x

Xn+l = xn + T pn/i

In Fig. 1, the potential has been scaled so that the two potentials -j

have a weak overlap. For small values of the total energy, resonant
orbits occupy the central part of the figure. These orbits are in the
region of the classically integrable motion. For larger values of
the energy, however, the orbits are such that the particles are swept
out of the well by the field. An energy dissipating collision can
drop a high energy particle into the resonant region, thus trapping
it within the structure. We expect these particles to contribute a
diffusive component of current. Large angle scattering, however, can
move a particle to a back-flowing orbit, which effectively causes a
reflection of particles from the device input.

A number of interesting factors arise. The potential is generic,
in the sense that it is similar in form not only to the devices men-
tioned above, but also to the sinusoidal force term in the Josephson
junction devices 18' 19. In the latter case, interaction between devices

can lead to a parametric pumping of the potential which yields period-
doubling bifurcations and chaotic behavior. The system (2) is not
truly generic though, as the set (x,p) are not proper action-angle
variables. We have examined the behavior through potential pumping,
with dissipation, through replacing the first equation of (2) with

3V(X n+ )

p. = P - T o + TF sin(t ) (3)
,.1 n 3x Pn 0 n

where Vo is the set of Gaussian potentials. The factor Y is an ef-
fective damping factor. In Fig. 2, we plot the (Fo,R) plane results.
The curve is a separatrix below which a stable device results. Above
the curve, the device is unstable. No period-doubling bifurcations

within a single device are found, contrary to18.

rI
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Figure 2. The separatrix in (Fofl) space for parametric pumping of

the device of Fig. 1. For values ,f (Fo,Q) above the
curve, electrons are ejected from the device, while for
values below the curve the device is stable. o

DEVICE ARRAYS

When device sizes begin to shrink toward the O.lpm or less region,
the line-to-line capacitance in dense device arrays begins to dominate
the total node capacitance . This parasitic capacitance leads to a 0
direct device-device interaction outside of the normal circuit or
architectural design. In conventional aescriptions of LSI circuits,
each device is assumed to behave in the same manner within the total
systen as it does when it is isolated. In the dense arrays discussed
here, this will no longer be the case.

The possible device-device coupling mechanisms are numerous and
include such effects as the capacitive coupling mentioned above, but
also include such effects as wave function penetration or tunneling
and charge spill-over. Formally, however, one may describe these
effects on system and device behavior by assuming the simplest for.
of ccu7)lin'. Arrays of devices, interacting in this manner, form a
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lateral surface superlattice 20 ,21 . Lateral superlattices, in which
the superstructure lies in a surface or heterostructure layer, offer
considerable advantages for obtaining superlattice effects in planar
technology. While a surface 1OS structure is formally similar to an
array of CCD devices 20 ,22, superlattices can also be fabricated through
the use of electron and ion beam lithography and selective area epi-
taxial growth 21 . If the coupling is capacitive, then the limitation
to a spacing less than the de Broglie wavelength is removed4 . We
have examined transport in such lateral surface superlattices (LSSL)
through a Wigner function approach. Before proceeding, however, it
is worth noting that the circuit theory view of LSSLs 4 is generically
that of cellular automata 2 3. Many of the image processing applica-
tions proposed for LSSLs2 4 arise from the "games" aspect of cellular
automata2 .

Superlattice structures give rise to sinusoidal energy mini-

bands with relatively narrow widths. The shape of such bands results

in interesting electrical transport properties. Lateral surface
superlattices have cosinusoidal bands in two dimensions, with the

third dimension quantized with discrete energy levels.

We have calculated the transport properties for such LSSLs from

a Wigner function formulation. A complete integral equation is ob-

tained for the Wigner function and must be solved to obtain the trans-
port coefficients26, 2 7 . However, the form of the solutions can be

found by taking the average velocity and energy from the first and
second moments of an equivalent Wigner representation of the trans-
port equation28. A constant electric field is applied in the plane
of the sinusoidal bands. For simplicity, a constant relaxation time
T can be used. Solving these two equations simultaneously leads to
the velocity and energy as functions of the field

29

(2w/fiL)2eF r

<v > (E+<Ei> - <Eo>) (2eF Z (4)
z 0 1 + (2ireF z lFL)1  4

<E > - c - <E >
0

< + + 1 + (2TreF zT/fiL) '5

where L 2n/D, D is the LSSL spacing, c is one-half the band-width,
and <Eo> and <Ej> are the equilibrium and transverse energies, re-
spectively.

The velocity as a function of field has the same basic analytical

expression as that obtained by Lebwohl and Tsu
3 0 except for the energy

factor in front of the expression for the field. The difference is
in effect caused by the different equilibrium distribution chosen.

In the latter paper, the authors assumed the initial equilibrium cis-

fN
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tribution is very close to a zero temperature Fermi-Dirac function,
while here the distribution is a finite temperature Wigner distribution
and includes the physics of the energy band shape. Note that the

velocity as a function of the electric field shows the negative
differential mobility predicted earlier and also exhibits the general
shape expected of the velocity-field curve.

To more exactly illustrate the mobility and negative differential
conductivity, we have carried out a Monte Carlo calculation. The
scattering processes are calculated for the model of Tafrate et al.21 ,
and thus are for the system of GaAs/GaAlAs. The scattering rates for
acoustic and polar optical phonons have been obtained using a two

dimensional density-of-states for cosinusoidal energy bands. A Van
Hove singularity occurring in the density-of-states produces a sing-

ularity in the scattering rate, which was removed by including the
self-energy corrections due to the phonons in the vicinity of the
singularity. The widely-spaced discrete energy levels in the third
dimension allows scattering and transport in that direction to be

neglected.

In this surface superlattice, as in others, the conduction band

splits into subbands. Here the lowest energy subband was nearly flat. 0
Therefore, transport dominantly occurs in the next higher minibands.
The satellite valleys and next subband are at energies of 0.2eV and
0.3eV, respectively, above the subband considered. Their contribution
to the transport of electrons is insignificant since there are no
intermediate energies through which the electrons can scatter to aid
population of upper bands. a

The overall transport properties of this system are calculated

by an ensemble Monte Carlo technique. The results of the simulation
are the velocity-field curves and are shown in Fig. 3. The lower

curve results for a field applied along one of the (10) basis vectors
of the square lattice array of cylinders while in the top curve the

field is applied along -a (11) direction. At low fields, both curves
show a linear region as expected for most structures. At approxi-

mately 8-10 kV/co the curves begin to bend over to the peak near

13 kV/cm. As the field is further increased, the velocity begins to

decrease and for this model continues to decrease to zero as the

field tends to infinity.

In summary, transport and scattering in a generic surface super-
lattice structure exhibits a ne-azive differential mobility arising
from Bloch oscillations 3 1. This surface superlattice negative dif-

ferential mobili:." is expected ti be useful at much higher frequencies

than that due to the conventional Gunn effect. Alternatively, related

instabilities may be an ulti.mate limit on very large scale integra-

tion ,''22.

Al
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Figure 3. The drift velocity (as a function of electric field) for
a LSSL at 300 K. The GaAs/GaAlAs model of ref. 21 has
been used.
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ABSTRACT

The effects of boundary scattering in submicron structure

transport at high electric field strengths are investigated in the

context of the balance equations which arise from the Boltzmann

transport equation. Integrated balance equations are presented into

w ich surface dissipation can be inserted. The evaluation of the

bulk and surface dissipation terms in the balance equations requires

k:o-ledge of the distribution function. We calculate this by in-

troducing scattering boundary conditions appropriate for hot elec-

trons and apply this to an analytic path-integral solution of the

high field Boltzmann transport equation. The la:zer treats lattice
antd electron-electron scattering approximately. 'e show that sur-
.ace scattering strongly perturbs and distorts the distribution

:u:nczion with corresponding effects on the transport orocess. The

7c,:euences of -his for submicron device technology are discussed
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treat transient space charge effects, etc., where self-consistency
is important. To extend this approach to include boundary scatter-
in effects is the purpose of this paper. Inclusion of surface dis-
sipttion effects is handled by first writing the balance equations
as integrals over the width of the semiconductor structure. We find
it useful to introduce a generalization of the Fuchs boundary condi-
tion to include hot electron effects on the distribution function
which underlays the balance equations. With this boundary condition
we rind an explicit solution of the nonlinear BTE in the presence
of lattice and electron-electron scattering for the simple case of
a uniform semiconductor film. The distribution function near a
scattering surface is shown to have a marked velocity gradient which
is important for evaluation of the scattering terms in the balance
equations. Thi significance of surface scattering effects for
device technology is briefly discussed.

BALANCE EQUATIONS

The well-known balance equations2 ,3 for energy, momentum,
and particle density are

<r,(> + (Os > - (e F > fpWlR[R'R> ()

where W is the bulk scattering rate, 0 stands for energy, momentum
component or unity, and< >means the momentum space average weighted
by the distribution function f. We can include surface scattering
effects Ws after integrating (I) across the semiconductor struc-
ture. For a uniform film in the region (-d/2 z s + d/2) in a uni-
form electric field F we then get

d fdz (0> _ fdz (eF > =fdz(< d p W 1p g l

(2)1> + Kfd3 piWs(.R) [4i(PI) - O(P)] > (2)

Evaluation of the dissipation terms on the RHS of (2) depends on the
or., of f, which we must investigate from the BTE.

SCATTERING BOUNDARY CONDITIONS IN HIGH FIELD TRANSPORT

A perfectly ordered interface with phonon coupling switched off
vouiu provide4 specular reflection and no size effect (in spherical
bands), i.e. one would have f(v+) = f(v-), where v- and v+ are in-
ciden: and specularly reflected velocities at a boundary. But,

wit : surface disorder and phonon coupling, both energy and mromentum

can re surface-dissipated: this will affect both device transit

tie .tu noise level. To handle the wide range of surface scattering

%0
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conditions that may be encountered in submicron device technology
we propose the use of the following boundary condition on f: -

f(v+ ) = Pf(v-) + (1 - P)f* (3)

in which P is a Fuchs type of specularity parameter4 which indi-
cates roughly the fraction of incident electrons which are specu-
larly reflected, and (1 - P) indicates the fraction scattered into
a Maxwellian distribution f*, characterized by some temperature T*
and quasi-Fermi level EF. This boundary condition differs from the
low field case in that T* and E* can differ from the thermodynamic
equilibrium values because the electrons incident on the boundary
can likewise have a highly nonequilibrium distribution. We will,
in fact, assume that surface scattering mechanisms are inefficient
in relaxing the energy, so that we can impose the two conditions:

f3v+ my2 f(v+) = f3v- my2  f(v-) (4)

fd3 V+ V+ f (V-1) =fd3v- v f(v-) (5)

where the latter condition conserves particle number. These two 0
conditions are sufficient to determine T* and EF. (Note that the
boundaries are planes z = 0 and z = d).

HIGH FIELD BTE SO TION WITH SCATTERING BOUNDARIES

We will be able to apply the foregoing scattering boundary
condition to the solution of the high field BTE in which lattice
and (e,e) scattering are handled following the bulk relaxation
cime approximation method of Keyes 5 . The BTE is then

f e -: f-f fe- f  (6)
3f + a f • - - e F " . = - +

St r - S Tee 7L

-ore

E2 v) (7)
kT

the dri:ed Iaxwelliz:n " h constant parameters v, T, and EF,,

er~ned from the balance equations. In this approximation 1/-.
th -h-.... and defecz c- zrering r.ae into the equilibrium dis-

f., and 1/ :'Ie (e, ) .s:ittering rate into t0e dri-
a:' I t i is is a crude appro: imaation to th

:.lision > ezral , . solution ; ,,il] provide good insight i -
,tin 2; ..i',rron of c ibutjo- function b'.' Surface scatter-i ' t .: = - , " -: ' ; a u, c ,. h v .I . : ' , f t t o : - i n t h e d i s i p a t i o n r e r :r s'
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336 R. F. GREENE ET AL.

It Is useful to set

f= f - f (8)

so that (6) takes the form

+ af - F - = F !- fl+ L(9)
at - - ap T - ap T

where

1/? = 1 ,kL + 1/T ee (10)

The corresponding form of the scattering boundary condition is

flv)= Pfl(§ ) + (1 - p) (f* - f) (11)

In contrast to the low field case, there are no safe linearizations
to be made in (9). Nevertheless, an analytic solution of (8, 9 &
10) can be obtained satisfying the boundary conditto9 411l) (with
(4) and (5)) by means of the path integral method ( ' I ) in which one
m~akes a convective-derivative transformation of (9) to a coordinate
system moving with the unscattered electron. In the present high
field case the motion includes both the equilibrium Hamiltonian
H0 = v2 /2 but also the nonequilibrium Hamiltonian H, --eo, where
F ==-4e/3r is the large driving field. In that trajectory coord-
inate system the ETE takes the formr (x is the direction along F

I- = -{ LkT L1?L (12)

,which may be integrated immediately to give

fdt/T1 fdt/TI 0fti7

1 (t) f f 10 e + e f t e

{ [~(v - VX) - -1 + -}(1.3)
.ret now denotes position along the trajectory, and we can take
t=o as the point where a trajecztory emerges from a boundary.

Since the trajectory is not that of equilibrium, v x varies with C
-ccording to

V.: - eFt/m (14)
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and there are corresponding variations in T, fe and i. To get
some idea of the resulting form of f(t) we replaced TI, and Tee by
constants and obtained

fl(t) - (fl0 + f2(t)) exp(-tIT) (15)

where

F-2(t2-2tt')1J /Nfo 2_
f2t io1e -l + fc,- e t~ [erf (W(t-Z,)) +

/eo w2 t, 2  + f'
erf (Lit)] + e [erfwt-.tl)) erfwtl)J (16)

Here f10 , i0 . feo, etc. refer to t = o, and

.2 e2F2  (a 2F2

2mT2ukT (7

-I~ [SF (vxo_ ) + _L] ; tj v.0 + (18)

With this solution we can follow fl from t = o across the film to
td =d/T~vzI, reflect it by means of (11), integrate back again to
z =+d and use (11) again. This gives us the explicit form of the
boundary values fl(v+) and lv)

fj(1 + gP)=gf + g(1 -)(f 0 ) (19)0

f4(1 + gP) = gPf2  (1 - P)(l + 2gP)(f* - i0) (20)

where g = exp-d/T~vzI, and f2d = f2 (t = d/TjvzI). We can then eval-
uate T and EF by substitution of the boundary values (19,20) into
the energy and particle conservation conditions (4) and (5). The
details of this will be ziven elsewhere, but for the case d/T<vz>>l,
i.e. where the film is thick enough compared to the total mean free
path to a~proximately decouple the two boundary effects, one gets
the two conditions

+v. <>(V. (21)

<Z V 'zK (22)

whor:e th -.eraging i:-. only o\:, r cte v! directions. This
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kT k ' + my 12, and IF/kTr F IkT (23)

.Now T and Fr can be determined in terms of v. I, and FF.' and the
approximate form of f used in the dissipation terms of the balance
equations (2).

it is interesting to sketch out the contours of f close to the

scattering boundary at z = -d/2, shown in Fig. I for a filn wider

than the mean free path. The incident distribution is close to the

drifted elaxwellian f. while the reflected distribution contains both

a drifted axwellian part and the "thermalized" component if. In
this figure we have also shown a typical trajectory integrated over,
in (12).

The asymmetry of thle distribution is thus quite strong in a

submicron semiconductor film with scattering boundaries of the type

considered, and such large angle scattering may be expected from

interface disorder4. There are then two coincident electron streams

of different velocity, and one may expect off-diagonal or viscous
effects as well as noise arising from turbulence. Such effects

should be investigated in the future since they may have major sci-

entific and technological significance.

Vvi

ELECTRIC FIELD

Figure 1. Corttours cf the electron distribution function neanr
a scattering boundary in a high electric field F. A
typical trajectory is shown, with initial (e-:erge: .t
veloc ity v3- termina ing at v(td) ]at the intersect o: it
the other boundary: td --d/TIvzl•

fJ
Ao
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CONCLUSION C

Boundary scattering effects have a significant effect on
electrical transport in submicron structures, particularly at high
electric field strengths. This may be a significant consideration
in the choice of material systems and structures for submicron de-
vices. Ordered heteroepitaxial interfaces are likely to present
significantly less transport limitations than disordered interfaces,
such as Si/SiO 2.

These boundary scattering effects may be treated via integrated
balance equations, where the dissipation terms are evaluated using
an approximate solution of the high field BTE together with suitably
generalized boundary conditions which can handle hot electrons.
The effect of surface scattering is to introduce an extremely sharp
assymmetry in the electron distribution the effect of which on
turbulence and noise should be investigated.
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The rote of boundaries and interfaces on the electrical characteristics of long and subniicron
scale compound semiconductor devices is discussed.

1. Introduction

Theoretical and experimental studies at compound semiconductor devices
over the past decade have demonstrated that conditions at the device boundaries
are the most important determinant of the operating characteristics of tile
device. Studies in long two-terminal gallium arsenide devices [1). indium
phosphide [21, germanium [3). and cadmium sulphide [41 have demonstrated
that conditions at or near the contacts control the current-voltage relations
and the electrical characteristics of any resulting instabilities. For two-terminal
devices it is often possible to correlate the pre- and post-threshold device
behavior. For three-terminal devices, most interface studies have focused oil
the role of the layer just under the principle region of elctron transport. lIn thle

case of gallium arsenide field effect transistors. heterostructurc Interfaces have

been incorporated wvith the object. e.g.. of confiningo carriers to tile active
region in the case of a heavily doped active region. (5.61. or of providing a1 sca1
of carriers in a nominally undoped region.

In near and zubmicron scale devices. thle relatixe Imiportaince of the

boundaries increases as these regions occup\ p a sizeable fraiction of thle device
active reeion ln:.and the up- and dowknstream houndarie.'. begin 10 crn)-

ri'.Mficate Wit h other. Controlline these boundaries Is likely to be the most

sit-":zfIcant task of device physics; studies in the immediate fuiture. The motiva-

DO!"~ for tis- ou!:ook'% is based upon thle fact that transport on aI near and
,tLuicron scale inokes nonequilhbrium effects on a picosecond time framec.
an~d It-. effecti%-n! is based on transport by highi mobility c.irrier. Thus.

utL:L.'tions Such 3s 'Hi\% man\. carriers are injected into the 1 valle\ of gallitiul

.ir'colde. and %%c -k ~hat enere\ and velocit0 ? enter the picture proItIIIIA.ii>

3'~-bO$/ --.-04)00/S0.O.t ': 19S, North-Iliolland
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The purpose of this paper is to highlight the effects of boundaries on
compound semiconductor devices, particularly gallium arsenide. In doing so.
the discussion is separated into two parts: (I) the role of boundaries on long.
low frequency (< 20 GHz) gallium arsenide devices, and (2) the role of the
boundary on high frequency near and submicron scale devices.

For long devices in which a rich body of experimental work exists, a review
of boundary effects is given in terms of a "pinned" cathode field and
-pinned" cathode current model. The basis for these models is the notion that
contact boundaries may be phenomenoogially represented as either tunneling
or thermionic emission dominated regions, with a varying barrier height. The
description of long devices assumes that all picosecond scale transients have
occurred, and that all band structure population statistics are adquately
represented by steady state conditions.

For the shorter devices it is the short time transients and the spatial and
temporal transients within the bands that are calculated. The description
requires solutions of the Boltzmann transport equation and resolution on the
scale of a fraction of a bulk mean free path is needed. These problems are
discussed in section 3 where a review of such phenomena as velocity overshoot
is given. The ability to attain contact and boundary effects permitting the
realization of the high overshoot speeds in devices is the core on which the
studies of section 3 are based.

All of the theoretical studies presented arise from solutions of differential
equations. For lone devices,the "drift and diffusion" equations are solved. For
short devices, moments of the Boltzmann transport equation are solved. In
both cases true contacts are represented as boundary conditions to the dif-
ferential equations. Thus, the studies illustrate the effects of the contacts
and/or interfaces on device behavior. The results of these studies, when
successful, tend to highlight what is unknown about device material parame-
ters. For the case of long devices, it is the cathode boundary condition that is
unknown. Here the sensitivity of the results to varying the cathode field
identifies the sienificance of the contacts on device behavior [I1. Similar
sensitivity studies are discussed in connection with solutions of the Boltzmann
transport equation. where a range of parameters is chosen to identify the
conditions for "inJeccing" ard -blocking" contacts. A sensitivity analysis of
the electronic contribution to the thermal conductivity is also included as its
effects are drarn-iz.

2. Boundar conditions to negatiie differential conductitii devices

In th. section a brief rei:% of the influence of boundaries on the behavior
of NDC device; i. given. Fi-=" I displays typical boundary -dependent data from
three different a!lhum arsen.de two-terminal devices 171. The Ioer portion of

Lr Irduv l I Il: Ol I'l
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each diagram displays current versus voltage characteristics. while the upper
portion shows voltage versus distance at one bias point. Fig. la shows
neasurements for a device in which the metal contacts are far removed from
the active region of the device. The current-voltage relation is relatively linear
until a point where current oscillations occur. The field profile just prior to the
oscillation is relatively uniform within the active region of the device, and is
near zero at the ends of the active region. Fig. lb represents a set of
measurements in which the metal contact abutted the active region of the
device. The current-voltage characteristics remained linear to threshold which
again was manifested by a current oscillation. Notably different here is the
lower average field prior to the instability and the enhanced voltage drop at the
cathode. Fig. Ic displays results for another device with a metal contact
abutting the active region. For this case there is a sublinar current voltage
characteristic and no instability. The probed voltage versus distance shows a
large voltage drop at the vicinity of the cathode.

The electrical characteristics associated with fig. I have been described as
representative of "ohmic" (fig. ia). "slightly blocking" (fig. I b), and "strongly
blocking" (fig. Ic) contacts. One of the earliest models employed for explaining
these results assumed a "pinned" value of cathode electric field (1). Other
models in which the cathode conductivity (81 or doping 191 have also been
suggested with varying degrees of success. The "pinned" cathode field model
developed, partially as a consequence of the way the governing equations
describing current instabilities was written. Here the one-dimensional differen-
tial equation for total current,

JIT IV -DL ' 8AT) q O8X.' aT'

was remwritten, using Poisson's equation, as

=E -E aE
J(T)=q\ 0 V+ D .- 'T(2)

This is a second orde partial differential equation requiring two boundary
condizions on E( A. T) and one initial condition. In the above J( T) represents
current densiv. is carrier densit%. I and D are field dependent velocity and
diffusion.

Solu'ions to eq. ('I have been used successfully to simulate device results
similar to those of fie 1. For gallium arsenide in which the threshold field for
tuicemt differential rnobility is approximately 3.2 kVicni = ET I- qu -T htu velY
similar results occur fir solutions uitl cathode fields falling into av one of
thLe fo!'.oing three iZ.-oups: 0 < E( X = 0. T) < E,-,,. E,, < E( X = KK 7) < 4
t.]I E, X = 0. T) >" ET,. The simulations with pinned fields fa:lln in either
group I. 2 or S %ield e;ectrical char.cteristics similar to those of il.. Ik.. I b and
Ic. re,nectivel . The :-u:ial feature of this model is thtt the c.Itho.- field iS



00

IVI

o~ C

00
c S2

c C 0C
I a .2

1.



L GnA%, AP. K'wwkr / hfigh S dmuwd ,~wmkemdww &v 599

pinned, necessitating thai any instabilities in current occur at a critical value ofr-.
current density. The field profiles associated with cathode fields in the range
0 < E(X- 0. T) 4 ET., and ETU EC( X - 0. T) < 4 ETI are sketched in figs.
2a and 2b respectively. For reference, a velocity field curve with velocity scaled
to current as qNoV(E) .(E), and with a region of negative differential
mobility is also included. Fig. 2 is understood as follows: The second column
of each section shows the electric field versus distance profiles. E(X) begins
with a value E at the cathode and extends downstream to a value Eh. By
current continuity, the current everywhere within the device is given by
J -qNV(Eb). For J <J.,(E,), a region of charge depletion forms near the
cathode for E below and within the region of negative differential mobility
(NDM). Increasing the current until J- J.(E) introduces charge neutrality
everywhere for Ec < ETH. However, because E is a double valued function of
V, for E within the NDM region, approximate charge neutrality exists near
the cathode for J 4 J(E), and for regions sufficiently far downstream from
the cathode. Charge neutrality breaks down between these two regions. Finally,
for J > J,(E ) an accumulation layer forms near the cathode. For fig. 2a, the
accumulation layer is stable until the bulk field exceeds ETH. For fig. 2b, the
accumulation layer, followed downstream by the depletion layer, is often
unstable and leads to cathode originated instabilities (10].

The situation corresponding to fig. Ic is often represented by very high
cathode fields. The field profiles are those appropriate to a wide region of
charge depletion near the cathode. The profiles are electrically stable.

The characteristic feature of these nonuniform field profiles is that their
structure is significantly affected by the field being a double valued function of
velocity. The pinning of the cathode field is not necessarily common, however.
to all semiconductor devices. For example, it was also applied to lnP devices.
where it worked for a significant number of cases. However, a broad class of
device behavior could not be accounted for through its use (21. These devices
showed anomalously high efficiency and significantly low DC current levels.
Spontaneous Gunn type oscillations did not occur. Rather, device operation
required a tuned circuit. The details of the oscillation were thought to depend
critically on the cathode boundary condition, which in this case was taken as a
fixed cathode conduction current [ 10.111.

The distinction between "pinned" cathode field and -pinned- cathode
conduction current is placed in perspective in fig. 3 and in the following
equation

dE,

J T

Eq. (3) is (he cc-tion for total current through the boundary to the de j,:e.
JjE_,) represents :he current-field relation at the ctihode 1121 which nu>l\ be
e\pected to differ from that of the semiconductor detice. -!wo such (%pes of
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Fig. 3. Cathode conduction current curve for an approximately -pinned" cathode field. curve A;
and pinned cathode conduction current (at high field fields). curve B. Curves are obtained from eq.
(4). Also shown, for reference, is the neutral current versus field curve for GaAs. From ref. (101,
with permission.

curves are represented by curve A and curve B of fig. 3. Curve A is closely0
related to the pinned cathode field model while curve B is associated with the
pinned cathode current model. The similarity in "form" of curves A and B to
moderate barrier height tunneling and thermionic emission dominated con-
tacts is deliberate r101. and the equation used to arrive at these curves is shown
below

wkhich was adapted from swudies on the unalloved metal/semiconductor con-
tact (13S1. Its use here presumes a similar description. For the unalloyed contact.
it Is the Ideality factor an". describes the contact as dominated by thermionic
emiission (it =I) or by tunnelins (it >> 1). J, is the reverse current flux\ and
miay be related to the barri~r height phenomencooically through the Richard-
soil eq.uation (lOJ.

Detecting a pasrcicular coritaci: effect on a de% ice Is a difficult procedur- For
lonle de% ices current ~ouechar.tcteristics J represented b\ ftc. I are often
Nhanature , of -, contact castatn.For Awirt device-s proximit\ eltfects
ttrodti:C Mn additional complication and nirn olt~ easuremen t, are

\es~.iluable. One type oe: nleasureinenit 111,i !.nt er\e to provide it.rit
tion aboutw the hotundair\ :, nois e itiedir:;::,i

HeIr'! the *:Itsaliot to eit~ 'ion that th e field ipinned \kiihir the

%
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negative diffcrential mobility region, increasing the bias will result in an
increase in the length of the NDM region. Any fluctuation will sustain
enhanced amplification and the noise will increase. If increasing the bias
resulted in carrier injection into the device, the field at the cathode is likely to
decrease with increasing bias and the noise is expected to decrease. While these
rcsults should be folded in with the field dependence of velocity and diffusion.
a simple analytical noise calculation assuming a three piece linear approxima-
tion to represent GaAs has been performed 1141.

In this calculation, the "impedance field method" (151 is applied to calculat-
ing noise due to thermal velocity fluctuations amplified within the device. The
mean squared noise voltage per unit band width 1151 is computed,

/ ) = \---4q2 f,.ZI' NDd(vol). (5)

where VZ is the impedance field vector [151. The calculation is performed for a
10 pm long element with a doping of 1015/cm. The element sustains the field
profile of fig. 2b where it is seen that the NDM region increases with
increasing bias. The calculations, which are discussed in detail elsewhere, (14]
are expressed in terms of the noise figure [161:

N =1 FV+ ( . k Vl (6)
Af 4k0 tIjRj'

where R is the real part of the device impedance. The results of the calculation
are displayed in fig. 4. where the noise figure is sketched as a function of bias
current and transit angle. The results appear as a signature of the effects of the
cathode boundarv. First, at low values of transit angle 0 = wT(-4). where T(A)
is the transit time across the negative differential mobility region, the noise
fieure increases vith increasine bias. This corresponds to an increase in the
length of the negative differential mobility region and enhances amplification
of any fluctuation originating there. More interesting structure is present at
higher frequencies and higher bias where the noise figure increases and then
shows a singularity. On the other side of the singularity there is a " U"-shaped
region endine again at a singularity. The strong increase in noise figure
r;:presents the approach of IR1 0. Here, at lox frequencies. the real part of
-he impedance is positve, and becomes negatite at frequencies somewhere
between ,- . _! 0 ! .-. in goin! fron oositive to negative values it passes through

zero. hence the sir.gularity. The frequency ranoce tor small signal negative
resistance increases ,ith increaime bias (101 reflecting the broadening of the
nezative differentia! mobility regions - a broad "U"-shaped region appears.
Both the increasing noise figure at Io frequencie:. 3nd the " U"-siaped region 0
.1: high frequencies ,re characterisawc of an increas'ing depletion liver wkidth.
Noie that iiicreas h.- bias sti ;tfrther will reult in afn electrical instability

IlI

" '. 'Y ,



602 If. L Gnju&g% J.?. Anz&.askr I Ii.fth dw~mmdsm~imvwdvv

0.48- J

404

I -

30 o.j =0.47.

20
ZI

10_ 0.44=J

0.40-1i

7r/2 ir 3V/2 2W

TRANSIT ANGLE. 8

Fig. 4. Noise figure versus transit angle and normalized bias currentj - Jb/JoeVP, for a 10 gm
long element with a depletion layer profile. From ref. 1141. with permission.

3. Electron transport in near and submicron devices: the role of the boundaries

The discussion of the above sections dealt with devices whose lengths were
typically 10 pum long or longer. Transport for these devices is generally e
discussed though use of the drift and diffusion equation (eq. (I)). For near and
submicron length devices electron transfer is generally not complete until a
substantial fraction of the device has been traversed. Consequently the drift
and diffusion description is inadequate and solutions to the Boltzmann trans-
port equation are required.

For two level transfer in GaAs the steady state velocity field curve for
carriers in the central and satellite valleys are shown in fig. 5, where the net
velocity V is

V = N. + . +. (A7 )

Here the subscript I denotes transport in the central %alley (F valley for GaAs)
and the subscript 2 denotes transport in the satellite %alley. Most device desin ',.,
is concerned with controlling the time spent by the numbers of carriers in

or
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in valleys I or 2: and circuits. interfaces or contacts are sought which will allow
for this control. Solutions to the Boltzmann transport equation which provide
the required nonequilibrium transport behavior arc obtained by a number of
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t 0.6
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ma0.3
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The balance eouations dis;cussed below are the first three moments of the
Boltzmann transort equationm. They form 3 subset of the Infinite hierarchy of
moment equations. and as such do not form a closed set of equations. Each
equation intro.,.ces a higher order moment not defined by t -e given se, of
equations. The nnost common form of the balance equationsi s obtained by
assuniine a dlktr:":urion function of the form

A r (-i)
f =f~a2 k, 7
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for each species i. More generally (20j

/. = + 4 'O7 + " l aUa, + ,, au, au au.+" .. ()

where it is insisted that the first term in the expansion gives the correct local
values of density, velocity and energy. The coefficients in the above expansion
are inversely proportional to density and are model dependent. The first
correction to the local equilibrium balance equtions. the so-called hydrody-
namic approximation yields
aN aN (10)

.(v TF T (0) _:
aT

W VW= -e,F',- Viv- 7 7 ]

+ div(oograd OT ," (12)•

where i; is an electron temperature,

P = .,v. w ; ,, + ! ,,]

a is a stress tensor arising from nonuniform velocity distributions. and sc is the
thermal conductivity. The stress term is dissipative in that when a nonuniform
velocity distribution is impressed on an electron stream, there will be reactive
forces tending to smooth them out. At this point, however, these terms are
regarded as phenomenological entries.

The boxed terms above represent contributions from the nonspherical
nature of the distribution function. These contributions have not been included
in evaluating the collision integrals. i.e.. (... ), but will be discussed in a
future paper. The collision integrals are discussed in ref. 121). The underlined
and boxed terms are ignored in the drift and diffusion approximation.

Under uniform field conditions the mean response of carriers to a sudden
change in electric field is shown in fig. 6. The high peak velocity iz a
consequence of carriers being retained in the F valleys for time duration
upwards of 0.2 ps before undergoing transfer to the upper valleys. The peak
velocity in fie. 6 is extremely hig h. It represents an upper bound on the carrier
velocity that may be expected at this field and provides the motivation for
designing boundaries that permit achievement of these values.

The peak %elocity. hinderer, is sensitive to bias rise time and hints at
problems to be addressed in designing appropriate device boundary condi-
tions. See fi. 7. Furthermor, because a finite time iN required for carrie: to

N '0
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Fig. 6. Transient velocity versus time, for electrons subject to a sudden change in field of
maenitude 27 kV/cm. From ref. (221. with permission.

transfer into subsidiary portions of the conduction band. on a near and
submicron scale, the velocitv field characteristics are expected to be length
dependent. See fig. S. Thus, near and submnicron devices will categorically be
sensitive to both boundary- effects and device length. neither of wLhich 'aIll be
independent of the other.

Figs. 5 to 8 are signatures of high speed subniicron transport. What are thle
consequences for device behavior? Can a suitable set of contact or interface
conditions be found to achieve high speeds associated w;,ith overshoot? While a
detailed stud% on a scale; siilar to that for Ionia de-ices is not yet available.
somie results are kno-,kn. We discuss these below for a collection of 2 .1. r lone
de~ ices, essentially un~oped. A', X 5 xlO/cni. each subj' ected to a biasz of 2

V.These one~diensionil studies are in stead% state. I eC., al/T =0. and are
ubjected to the follo-,kng cathode boundary conditi ons:

log A"= A 1

U a
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Fig. 7. Peak carrier velocity versus bias rise time for electrons subject to a final (aild of 17.6
kV/cm.0
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V, -pF (14)

T, B.(15)

aN/3X- avz/ax - aT,'ax -o. (16)
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For A positive (negative) local charge accumulation (depletion) occurs at the
cathode boundary. B is generally greater than. or equal to. 300 K and is a
measure of the mean thermal energy of the '-vallcy carriers. As in section 2.
the results are placed into three categories. "ohmic". "slightly" and -strongly- '
blocking contacts. The "ohmic* results arc shown in fig. 9.

For "ohmic" boundaries an appropriate set of constants, with ref. 1191. arc:
A = 0.2. i, = 12.000 cm 2/V -s. and -r, = 300. For this case carriers enter the
device with speeds greater than that associated with the central valley mobility.
Consequently there is an accumulation of carriers at the boundaries, resulting
in low values of cathode field. The field starts off at nearly I kV/cm and 0
approximately 2500 A must be traversed before significant transfer occurs.
Increased transfer results in a lowering of the mean carrier velocity, neessitat-
ing an increase in mobile charge as the anode is approached. The average

velocity across this device obtained from the relation

= J/qVo (17) 0

is V.. = 1.78 X 10' cm/s. with NO - 5 X 10'/cm3. The advantage of overshoot
is not fulfilled by this contact device length configuration.

Lowering the cathode mobility to a value below that associated with the r

valley results in a more rapid dispersal of carriers, and cathode adjacent charge
depletion, associated with slightly blocking contacts, occurs. This is seen in fig.

10 for A = -0.11. P = 6000 cm2/V- s, and 7, = 300 K. It is noticed that the 0
cathode field for this case is approximately 4 kV/cm. which is higher than that
associated with the "ohmic" contact condition of fig. There are, however.

important similarities between figs. 9 and 10. In both cases the carriers
adjacent to the cathode are. for all practical cases. F-valley electrons. Very little
transfer, which is determined by carrier energy (temperature). has occurred. In

addition, sufficiently downstream from the cathode the carriers appear to be 0
ignoring the cathode condition and are dominated by the downstream voltage

drop. whose spatial distribution is about the same for both. The average

%elocit% for this case is 1'. = 1.75 x 10' cm/s. slightly below that of fig. 9.

A significant chanee occurs when the mean energy of the '-valley entering

carriers is elevated. For the parameters of fig. 10. but with = 1200 K. a

substantial amount of transfer occurs at the cathode. resultin2 in a lowering of

the current throuwh the device. The cathode field is approximately 7 kV/cm.

hgher than that associated with fii. 10. and the downstream field is lower (see

II). The average elity of the carriers in this case is lowered to 1.28 x I0'

c1::.js. even though the central valle. carriers are traeling at higher speeds (see
ft- 5). -,

The presence of nmoderatel- high cathode field: is attractive if a sufficient

number of carriers can be retained uin the central v..llev' where the, can sustain

h-h transit velocitie. While this c.i'e is discussed in more detail below. the

swiple ruse of injecting excess carrier! into a de% ice with the contact conditions

0
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Fit. 10. A, in fi. 9. but with u, - 6(0Wc-/s A =-0 11 and P 300 K

of fin. 11 does not alwkaS v ield the soueht after current le~els. This Is
illustrated in fiz. 12. where now .4 = 0.2. Here, the exces'- charee serve%, to
low~er the cathcde field, which does not clianee the dov.nrstrean characteristics
i n any significant wa%. The a'erage velocity for this case is .irtuall% unchaneed

* ~- M r
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Fiz 11. As in fie. 9. but %ith#,- 6000Crn1/V-s, A4 - -0.11! and R = 2'K) K_

v~hen compared to fit. 11i. In this case . = 1.30 x 10' cm.'.,s
The situation of 3 strongly blocking contact is illustrated in fig. 1I for

.-I = 9.0. it = 1000 cm:/V -s, and T = 3000 K. For tis case irtually all carriers
are swept away from the cathode. with the satellite valley carriers accounting

for most of the transport in the transition region. The cathode field Is
extremely high. approaching 60 k\'/cm. The average veloclt\ Is approximately

The above results focus attention on the role of (tie upstreaml boundar\ in

those obtained using the steady state field dependent velo,:ity relation, espe-

ctially in identifying the fact that electron transfer, evene m (lie ruse of purttl~v
bl,,wking contacts. m3% not occur until somne point dov, n:tre'ani front (he

0 r
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coupled to an appropriate device design. Within thc framework of the dis-
placed Maxwellian. improvements in device structure are synonymous with
values of electron temperature that arc below that rcquircd for electron
transfer.

0
z10 N.O5 S 5I0/ncm
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0 ,- I.0
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i, I. (a) Dopm..: Jd ribution for N-N - -N dcvicc B,.. i, I V. and co!.,,,ns at thccjihxi

houndjr\ arc 3 In fiz 9 (b) -Ilectnc ficld dt'mnbution
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One way of reducing the electron temperature is simply to go to shorter
device structures, and recent results for gallium ar.enidc at room temperature
suggest that device structures not greater than 0.25 pm may he required. A
structure that has recently been discussed within the framework of near and
submicron devices is the N-N --N structure shown in fig. 14. This structure
has four interfaces to contend with. The most significant aspect of this
structure is that it introduces an abrupt change in field at the N-N - interface,
which tends to emphasize overshoot contributions. The detailed input to this
calculation is as follows. The N region is doped to 5 X 10I/cmn with tlie N -
region an order of magnitude less in doping. For this device the cathode ohmic
conditions of fig. 9 were imposed. and an average field of 5 kV/cni was
imposed. We note that over a distance of approximately 1.0 pm there is very 0
little electron transfer. Current is carried mainly by F-valley electrons whose
carrier velocity peaks near 6 x 10' cm/s. showing substantial overshoot. The
electron temperature for this calculation is shown in fig. 15, and is reasonably
low. V, for this case is 1.3 x 10 cm/s.

The results of this calculation are very encouraging. However, they are not

solely a consequence of structural device changes. The retention of r-valley
electrons in the fig. 15 calculation is a consequence of using an electronic
thermal conductivity appropriate to 5 x 1015/cm " through the Wiedemann-
Franz ratio. A reduction in electronic thermal conductivitiy results in steeper
gradients in electron temperature. Fig. 16 shows results for a value of thermal
conductivity in which substantial transfer occurs within 0.5 pm of entry into
the N - region. The average current has dropped to 6,5 X t0 cm/s. The first 0
set of results which virtually eliminate transfer must be regarded as an upper
bound on current, whereas the second set is a lower bound. Actual d. vice
results are likely to fall between the two. One important measurement likely to
provide significant information is whether a I pm. 10/cm" element will show

small signal tain. 0
Returning to the boundary conditions, there are several points to be made.

First. there is a clear indication a.s to the procedures necessary for generating
an entire set of *'ohmic" and blocking contacts. It is not likely, however. that
the boundary prescriptions of fits. 9 to 13 are unique: other sets of conditions
can be envisioned to yield similar results under DC conditions. Distinguishing
between different boundar% condition effects will come from time dependent
studies. The question then is: "Ho% model dependent are the results*'"

The governing equations are derived starting from the condition of a
displaced a\wellian. %%hi,:h as.sumes strong electron-electron interaction.

Bounda.' s.iauering is like, to subhtanriall\ alter this interaction - near the
boundar' [25] Results tha; appear to be model independent are those associ-
ated with the entrance %elocit\. If central %alle, carriers enter with speeds
greater les) than that dictted b\ eqtilibrium band structure conideratious.

c.arrier .accumulation (depleiton) ill occur.-,

N
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'- - 2- L-"23- 2M,- J

Fig. 17. Representation of spatial dcpendence of current (low through two lcvd device as a serial
chain of parallel clements. The first subscipt in each elmcent represents Current through the
central valley I or satellite valley 2.

Another point worth raising, particularly with regard to the absence of
overshoot in figs. 9 to 13, is the fact that for at least half of these devices the
space distributions were in steady state equilibrium with results similar to those
of the drift and diffusion equations. While going to shorter device lengths does
not necessarily prevent this from occurring J261, the length dependence has not
been explored.

The results of figs. 9 to 13 also suggest that transport in a multivalleyed
system may be controlled by one of the valleys. In the above examples, control
is by the central valley; satellite valley boundary conditions are relatively
benign. To see the reasons for this it is necessary to turn to fig. 17, which
represents current flow through the nonlinear elements as a linear chain of
parallel resistors. In this figure

Ji,-NiVij, i .2 ..... N,
J,: ,2 V,,. i=. 2 . ..

The voltage across element i is FA X. Thus if. e.g.. the F valley in element I
sustains a net carrier density below the background. it will have a higher
resistance and voltage drop than an element with a density closer to back-
ground. This. of course, is consistent with the results of fig. I I and suggests
that the portion of the conduction band with boundary conditions most
strongly departing from the uniform field conditions will be the dominant

boundary condition.
The contact boundary conditions discussed in figs. 9 to 13 address only a

small part of the problem. It is certainly unrealistic to assume that undesirable
departures in dopintL will be absent. A simulation of a nominally 10 '/cm "

dotped device. with a 101 decrease in doping over a distance of 1000 A, is
.%,n in fie. IS. The distortion in electric field, for the set of boundary

c.x: itions listed in the caption. is such as to preven, an real overshoot from

The above resuhk which reflect the influence of sp.ice charge on transport in

dL-,ices should be compared to uniform field calcultions to indicate the goals

perh:ips shouhd b taken for some device s:ructures. Fi . 1) displays

",.,city versus d tance curves for electrons subjected to a suJd, value of
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Fig 19. %'cloci,% ersu, dlStance for ceczons with 3 finite entrance energyubjected to' a sudden

chinee in clecin field. From ref. (271. uith perission.

electric field. In this case the enerz,\ of the enterng carriers is Just belox that

required for electron transfer. It i- seen that mioderate 'al~ieS of electric field
are necessar% to sustain hifli transit velocitie. In fig.. 20 (lie dependence of
transit velocitx oil entrance etr is calculated. It is seen that there is a

i~ndoa" (or hi~h transit '%elociuie,. and it is this, velocno. le~el that is Sou21hi.
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Fie. 20. Velocitv versus distance for electrons with varying entrance enertics. subject to a sudden
change in electric faid. From ref. f271. with permission.

4SurnmarN

The experimental situation is such that, with the exception of long Comn-
pound semiconductor devices, there are very few data on the role of boundaries
a:nd contacts to submicron devices. The reason for the pauclx\ of data lies in
.he fact that most submicrcon devices are three terminal device designrs and the

: irinerinal tends to mask the role of the cont boun1daries. This Is
e\-tremnelv unfortunate since it is likely that two terinnal device, measurements
-.kil indicate what can be achieved in controllin , the entrance dyniamics of the

crrc To date, most tw-o terminal device measuremients on simple device
:ruccutre.s hav~e concentrated on the role of transport wid/lw the device, and

rethe question of whether "ballistic'' motion is posiblc ("SI Based on the

O

vam
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history of vacuum tube dynamics 1291 it should be recalled that. if transport is
ballistic, the electrical characteristics will be controlled by the contacts.

The situtation in suhmicron devices is further complicated by communica-
tion between the up- and down-stream contacts. Thus it may be expected tiat
the influence of a blocking contact on the dectrical characteristics of long and
submicron devices will be different. For submicron devices simple current
voltage measurements may be rendered useless as a diagnostic tool. This is
certainly not the case in long devices.

The role of numerical simulations in these boundary and device studies has
been to act as surrogates for measurements that are not feasible. In one case.
obtaining cathode boundary fields from measurements was not possible. Thus
for long devices the sensitivitiy of the numerical results to numerical changes in
the boundary conditions, when coupled to experiments, provided the key to the
role of contacts on device behavior (1]. For submicron devices, the difficulties
of direct correlation of experiment with specific transport phenomena are
apparent and simulation through parametric studies will provide a key to the
role of boundaries. But the description of transport on a submicron scale is still
inadequate and the descriptive role of boundaries is correspondingly weak. For
example, most space'charge dependent problems still treat the background as a
"jellium" distribution. The discrete nature of impurities is ignored, as are
structural variations in the contacts. The extent to which this affects such
measurements as current-versus-voltage is yet to be determined. Notwithstand-
ing these uncertainties, a considerable amount of information can be obtained
by extrapolation from the ideal cases which can provide bounds on the limits
of transport through both the boundary and active region of the device.
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1. Introduction

The thruISt of' integrated electronics in recent vcars has been toward :hc
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submicron semiconductor devices have been hampered by our lack of
detailed understanding of nonequilibrium semiconductor transport on
scales intermediate to the true atomic scale (< 10 A) and the bulk solid-state
macroscopic scale (>I pm = 10' A). The transport in this regime is -s
complicated by the high electric fields and the resultant hot-carrier
phenomena. For example, I V across a 0. 1 -pm channel produces an average
electric field of IOsV/cm, enough to produce hot-electron effects in any
semiconductor.

As early as 1963 hot-electron effects were suggested to be important in
MOSFETs (Grosvalet el al., 1963), and the role of velocity saturation
was considered shortly thereafter (Trofimenkoff, 1965). Subsequently,
the role of hot carriers in metal-oxide-semiconductor (MOS) and
metal-semiconductor (MES) devices has been investigated and reviewed.
Many of the problems that arise in transport in submicron devices are due
to the very fast time scales inherent in these small devices. For example, an
electron traveling at 107cm/sec can cross a 0.1-pum channel in 10- 1 2sec,
which is a time on the scale of the appropriate relaxation times for
momentum, energy, and charge. On this time scale, the electrons
encountering a high-field region of such dimension, as, for example, the
pinch-off region in a MOSFET, do not have adequate time to establish any
sort of equilibrium distribution, a point made rather pointedly earlier by
Ruch (1972) and Maloney and Frey (1977). Additional complications arise
from the fact that the collision duration is no longer negligible on this time
scale and strongly affects the transport dynamics (Ferry and Barker, 1980a).

Many semiconductors exhibit velocity overshoot, in which the velocity
can reach levels well above the steady-state value in transient response to
high electric fields. Such effects have not generally been felt to be important
in logic devices because the contribution to the delay time from the transit
time is somewhat smaller than the contribution due to the interconnect
capacitance. Yet. it is not generally appreciated that such overshoot effects
have an indirect contribution by increasing the apparent saturation velocity
in small structures. Thus it is not the direct contribution to a reduction in
transit time. but the indirect contribution to the increaised effective
saturation velocity, that makes overshoot effects important in very small
semiconductor devices. Clearly. the emphasis in studies of de% ice scaling has
been on questions other than whether or not our current uncr-standing of
de% ice physics is adequate to handle devices on a sniller sph:.I scale.

In the modeling of semiconductor devices, the major ph' .il e'lfects are
dominantly tied up with tie manner in which the char!e ti :c1 na ions and
current responsc are coupled to the local electric field. 1o'm:ll'. related
throug-h the continuiii t equation. To determine the enrrent respolnse
acCUratel\. ono iust so!.e an appropriate t ransp1'rt Cqttati,:. aid it is in
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these transport equations that many of the major modifications arising from
these short time scales occur.

In the following sections we examine, in some detail, the considerations of
overshoot that arise in transient transport. In the next section we first
discuss the intuitive view of overshoot and the velocity autocorrclation that
illustrates overshoot. We then turn to a discussion of the experiments that
have been carried out in attempt to measure overshoot. Finally, we
undertake a detailed theoretical treatment of the quantum transport
equations to illustrate the proper balance equations.

I. Overshoot Velocity Effects

In an otherwise perfect crystal, the mobile electrons have a well-defined
energy distribution, with some carrier energies very near the threshold for
phonon emission due to the need for detailed balance to exist. As a result,
even for small applied fields electron-phonon interactions will occur, and
ballistic transport in the microscopic sense is not observable. Instead
ballistic transport in the sense of the mean is conceptually possible where on
a short time scale the mean velocity is approximately given by

(V> = qFt/n*. (I)

Equation (I) implies an ensemble average in which electron--electron
interactions are sufficiently rapid for the carriers to be in thermal
equilibrium with each other. Further, for GaAs, t in Eq. (1) is generally less
than the relaxation time for the Fr6hlich interaction that is, t < 0.3 psec.

When we examine transport on a time scale longer than that for which
Eq. (1) is approximately valid, dramatic nonequilibrium size-dependent
effects occur. The phenomena have been referred to as velocity overshoot
for reasons that will be apparent. We concentrate on gallium arsenide. which
for simplicity we treat as a two-valley semiconductor.

At lo%% values of electric field and at room temperature almost all of the
carriers are in the central valley. In the absence of ionized impurities.
detailed balance dominates and the mobility, a "'mean" quantity, is
determined by intravalley Iongitudi nal-optic-(LO) phonon scattering. At
hi_,h v.les of electric field intervallev phonon scattering beconmes the
do:i.l',, scaleri ,_ mechanism, and there is an increased level of
sponta ott. phonoln enission. For the central kalley. velocity t...traion
occurs. but at values of velocity higher than the steady-state velo\!tv. The
gcn :ral S1ttMtion is. represented by steady-state curves for the me. i carrier
%elciit in the central and satellite valleys. )ue to differences in rh" effective
n.u . i" carrier %elocitv is highest for central valley electrons.

o6
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Fig. 1. Mean transient carrier velocity versus time for zero and finite Collision duration, for
GaAs, at 300 K. Results are obtained from the first three moments of the quantum kinetic
equation. NO = 10'': F = 27kV/cm.

Once we recognize that a finite amount of time is necessary for carriers to
transfer from the central to satellite valleys. we see thle immediate
possibilities of high transient velocities. Typical transient curves are shown
in Fisi. I : one result is for zero collision duration and a second for finite
collision duration. Thle crosshatched region. where thle e\pired tine Is less
than thle LO-phlonon relaxation tinle. is referred to as temean ballistic

Thle calculation of FiQ. I can be translated into0 a \'lCI, 7 -%Cer;LSu-d:,7L3nCe
transient. Then repeating tile calculation ai different \' LieS Of til-Ij. WC
obtain thle results Inl 1-g. 2 (Grubin and Ferry. 1981 ). It .- clear that as thle
device dimensions are reduced, thle apparent szturaixl- dri't \ eloclt\
increases while the presence of' tnegat:\e differetial: mb vIs eliminated.

L L4
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Fig. 2. Field dependence of the effective drift velocity (Lit) for GzAs. The parameter is the
transit distance.

This particular result is highly significant insofar as it suggests the possibility
of engineering a size-dependent device, which in one case offers negative
differential mobility, and in another velocity saturation. Similar effects are
also observed in Si. where the overshoot arises from differences in the
relaxation time. If the energy relaxation time TE is greater than the
momentum relaxation time Trt, then the velocity first rises to a peak and
then decays to a steady value as the scattering rate increases due to the
increase in the average energy.

A conduction electron in a semiconductor is not a free electron. Within
the effective mass approximation, the conduction electron is a quasi-particle
whose effective mass describes an averaged (and renormalized) interaction
vith the atoms and bound electrons. It should be apparent that the

correlation between electrons is important. This is more evidenced when it is
recognized that a kinetic equation. such as the Boltzmann transport
equation. for the average single-particle distribution function is an
approximation to the full many-body problem of large nu!mbers of
conduction electrons (BogoliubuV. 1946: Kreuzer. 1981). Although it is
possible to project such single-particle equations. these must be c ist so that
a description of die correlations between the electrons-the correl,.ton v
functions -is recoverable. Indeed. it was Just this view that led Kubo f 157.

-'I
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0 . 0.2 0.30

V 0.2psec)

Fig. 3. Normalized velocity autocorrelation function 0,,(t - t" to) for electrons in Si for
three initial times to. From the inset, it is apprarent that 0,, is constant for only a very short
time.

1974) to formalize transport theory entirely in terms of the correlation
Ifunctions. We propose to show how proper treatment of the initial transient
response limits the range of ballistic transport.

In a semniconductor subject to an applied electric field, the carriers respond
to this field, as well as to a random force, which leads to velocity
fILuCtuations. as well as to the concept of temperature (thermal fluctuacions).
The response to dhe applied field (applied at 1 = 0) can be writen as

t:d(l) 6,f:f* 0(1'.0) C/1'.()

herC . 0) is the nons1"ta tionarlV. t"0o-11 tim C\locit\ autocorrela .on -,1

nunction \% hose am phi tide is normalized to unitY at I 0. Althouchl K bOO
obtaineId Eq. (2) for, the eq nilibritii UstILtuition, its \'aid t\ has also beenf
c',,iahlislc! fo(r the aoneqtiilibrinni. ijgh-11Ild cae (Zimmermiann t'; OL.

I .A hlear increase in the velocity, as. in 1-Lq. (I) canI 011lk occur so,* lonLg

1100 12111101 111ZXQII10
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Doobs (1942) theorem states that for a stochastic process that is stationary,
Gaussian, and Markovian, the autocorrelation function of the process is a
pure exponential. Applying this to our system when the steady state is
reached in the presence of the electric field and where the autocorrelation
function of the velocity fluctuations is not an exponential, we infer that the
system is neither Gaussian nor Markovian. The fact that the system is not
Gaussian has long been rccognized, since in the presence of a field in the
hot-carrier regime, the velocity distribution departs strongly from a
Gaussian distribution. The same is true in real space: If initially the system

has a 5-function spatial distribution and then evolves freely in response to

the external field, diffusion (i.e., velocity fluctuations) causes the packet to

spread around its mean position, and the departure from a Gaussian is best

seen by calculating the third and fourth cumulants of the distribution. As is
well known, these cumulants vanish for a Gaussian but differ significantly
from zero in the hot-electron case (Ferry and Barker, 1981: Lugli et al.,

1981). Clearly, the nonlinear, nonequilibrium transport has driven us away
from classical statistical mechanics.

An equation such as Eq. (2) is readily obtainable from a retarded
Langevin equation (Zimmermann et al., 1981). Such an approach is
appropriate since it yields an equation for vd(t) = (v> that we shall derive in
a later section. Indeed, there we shall calculate balance equations, correct
even on the short time scale, that may be expressed as

*dVd -= qE - ,#I* dt'X,(t )vd(t - (3a)

dE
- = qFcd(t)[ i - 0,(,0)] - dt'[E(i -') Eo]X(t'), (3b)

dt fo

where X, and X, are decay functions related to the velocity and energy
correlation functions. Indeed, the time integrals of X, and X, give the

relaxation rates lIt, and I/rt in the limit as i-- oo. In this regard. Eq. (3a) is
particularly consistent with the correlation function approach of Eq. (2), as
it is an ensemble average of a generalized, retarded Langevin equation.

Except for the details of the correlation function and the conolution in the
relaxation terms. Eq. (a) differs little from earlier forms. Such is not the

case for the energy equation. Eq. (4). because of the presence of the memory

fu nction iII [he d-1vi% ,, terl .
In stud6min, the transient recime. one considers ,_,'neral, .. Population of

electrons at cquilibri uivi \it the crystal lattice (i.e.. described by a

Maxwell- Boltzann distribution), which, in our case. are suddenly sub-

jected to anI ex.\ternal hornogzeneous electric field. Tlhen the k djistribution .- , 0

carriers e.olve, trom the equilibrium one to a far-lrom-ecuDtbrn. stead\-

't 1te d1tt,1itItio:, imnposed In the presence of the clectrd,: " qto

b

V
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such as Eq. (3) are useful in this regard. Moreover, the presence of the non-
Markovian convolution integrals is a result of the nonlinear evolution of the
system, in which the scattering rates themselves are evolving in time. This is
evident in the nonstationary character of X,(t'), which is related to #,(t,. I
- to)(" = I - to) in Figs. 3 and 4. The essential feature of this function is
that it exhibits a negative part that exists in the range of time during which
the ensemble drift velocity experiences overshoot, and this negative part
persists even when the system has reached its nonequilibrium steady state.
Such behavior characterizes a system that evolves with two kinds of
relaxation, namely momentum and energy, characterized by very different
time scales for each in semiconductors. It follows that, in this case, the
autocorrelation function departs strongly from an exponential, except when
the electric field is sufficiently small.

We now want to examine the frequency dependence of the small-signal
conductivity, in which stationarity is reached. Using Eq. (3) in the frequency 0
domain, we obtain the frequency dependence of the mobility

(w) = (e/n) [iW + X(iw)] - , (4)

and X(ico) contains all the details of the frequency dependence. The complex
structure of X(ico), including the effects of energy and momentum relaxation
in the system, generally leads to a real mobility, which, as frequency
increases, at first increases and then decreases after experiencing a maximum
(most often in the far-infrared domain). Indeed, as has been established by
Kubo (1974), the generalized susceptibility of the system (the mobility, in o
the present case) is proportional to the Fourier transform of the velocity
fluctuation correlation function [at least in the steady state, but Eq. (3a) is
valid in this case as well], and Eq. (3a) allows this result to be recovered
once it is recognized that the correlation function has an important negative
part. as shown in Fig. 3. When the carrier dynamics are modeled with
equations like Eq. (3a), which are non-Markovian in nature, we can recover
the essential results known from previous studies on hot-carrier effects.
namely, velocity overshoot. the negative part of the velocity fluctuation
correlation function. and the proper spectrum of the mobility as a function
O frequenc%.

An approach similar to that of Eq. (4) was previously proposed for
application to the calculation of the dynamic conductivity of simple metals
(Gotze and W61lfle. 1972) but is certainly older (Zwanzig. 1960). It \%as
introduced by G6tze and \W611le in order to explain the high-frequenc.
behav ior of the conductivity, and the connection to the classical Drude
0hor\ i> possible only in the low-fIrequenc. domain, or long ime limit, of
Ole s s~cm. More recently a similar approach has been used for
-emicond ucting surluce incsion layvers (ine cI t. 19( 1.
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Ill. Experiment on High-Speed and
Submicron-Lcngth Dcviccs

Velocity overshoot is a transient nonequilibrium cffect. It occurs on time
scales of a picosecond or less and almost certainly represents the response of
a distribution of carriers to sudden changes in field. Both requirements may
preclude manifestation in today's commercially available devices, although
some new design structures should overcome these difficulties (Grubin el al,
1982). Independent of design, the time scales of the phenomenon place
unrealistic demands on most electrical instrumentation and have resulted in
all-optical measurements, as discussed in the following.

In Fig. 5 the physical time scales associated with momenta and energy
relaxation are compared to existing and projected optical instrumentation.
The scattering rates are those appropriate to gallium arsenide and represent
interaction within different portions of the conduction band, at different
values of field. The initial overshoot phenomenon occurs at the lower end of
the scale, where the energy scattering rates may be several orders of
magnitude less than those for momenta. The first attempt (Shank et al.,
1981) to measure this transient response involved the "pump-and-probe"
technique summarized later in this section. The method was applied to three
different bias-dependent overshoot situations. Since the efficacy of the

Projected) Optica. Instrumentation

N\\\ Energy Scattering Rates N .

1015 1014 1013 1012 1011 1010 1 10 8 (sec 1)

Initial Overshoot Rj!. 'e

.ig . p iri o: . ot i llollltllll ;id cict - rcd l;hvo '.: IIIike.1, , :.id r1 I ru i tJLt ;

:.Tne scJ , [Lot r blocks d&nole it tl oan t"c
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Fig. 6. Time dependence of electron drift velocity, at three values of electric ficid. for GaAs.
(From Ruch. 1972.)

technique is dependent on the degree to which bias-dependent results are
correlated with overshoot as presently understood, some discussion of the O
theoretical predictions is in order.

The phenomenon of overshoot was discussed in an earlier section and
illustrated in Figs. 1-3. Quantitative differences occur at different bias levels,
as any number of publications have shown. For example (Ruch, 1972). in
Fig. 6 calculations at 1, 5, and 10kV/cm show progressively higher peak o
velocities and shorter time intervals before the mean carrier velocity attains
its steady-state value. The attainment of progressively higher velocities is
due to r valley carriers acquiring high speeds before transfer. The
realization of shorter velocity relaxation is related to two features: (I)
Carriers are heated more rapidly, to higher electron temperatures. at higher o
bias levels: this, in turn. leads to (2) more rapid scattering rates. It should be
noted. however, that the presence of shorter velocity relaxation does not
imply steady-state equilibrium at I psec. Energy relaxation generallv
requires larer time intervals than velocity relaxation.

The pump-and-probe method used to examine overshoot involves
photoe\cita.tlon by picosecond lasers. As illustrated in Fig. 7. a beam from a
passi\el i mode-locked dye laser is split into t\%o beams: one part excites the
GaAs la: e; \ith a short pulse. wile the second optical pulse is speCt:Jll\
broadened arnd used to probe the absorption spectrm .1at delayldtI m 11lC' ,

The e\periinents \kere pcrl(rmeid at 77 K onl the structure ShLO\\ n in It S.
with puLI:p ,d probe throiU_' the echCd \illlow..-\ ariable optical delal
line ptro id' the tinlne bctxccn putmpit-g and problji. A \oliae atpplckid

-'

ji 111 111
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Spectrumn analyzer

Sample

ProbeExcitation

Fig. 7. Schematic of experiment for deermining overshoot.
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Fig. 9. Induced optical dcnsity changc in GaAs at t = 20pscc following excitation by a
0.5psec pulse at 8030°A. -, 14kV/cm; ---. 22kVcm; ---. 55kV cm. From Shank et al.,
1981.)

across the sandwich structure and modifies the optical absorption, as
described by Franz (1958) and Keldysh (1958). The optical absorption is
further modified by carriers optically injected near the band edge. The 0
optically injected electrons and holes drift to opposite ends of the sample,
thereby altering the net field across the device. The small space-charge-
induced field perturbs the Franz-Keldysh effect, and the temporal
evaluation to steady state is monitored.

The experiments measure the optical absorption spectra as a function of M_
relative delay time. The differential optical absorption spectra are then
obtained by subtracting the spectra before and after a specified relative delay
time. The differential spectra after a 20-psec delay are shown in Fig. 9 for
three applied voltages. Note the dependence of the period of oscillation on
the applied field. The amplitude of the absorbance change is obtained by .
adding the area under the positive and negative portions of the differential
absorption spectra. and this is shown as a function of time in Fig. 10. The
points in Fig. 10 are data, and the solid line represents a fit through the
equiation

!,)x(y:) =,d[l -xp(

~ d I't (it exp( - 'd).

,, v
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dashed curve represents a fit with a single value of electron velocity chosen
to match the data near i = 0, where

OA (i ) V, + V(5b

a Aa(oo) d (5b)

Here vh, is taken as 10"/cm .sec. There is an apparent decrease in the slope of
the absorbance, and a better fit, represented by the solid curve, is obtained
from a two-velocity fit. For the 22 kV/cm result, the dashed curve is for a
single value of velocity = 4.4 x lO7 cm/sec. The solid curve is for a two-
valued velocity with v = 4.4 x 10cm/sec for i < 1.1 psec and 1.2
x 10cm/sec for t > 1.1 psec. For the 55-kV/cm resuh a single fit of 1.3
x l0" cm/sec appears adequate.

There are several points worth noting. First, the slopes of the absorbance
curves are higher at the lower bias levels suggesting (Shank ei al., 1981) the
presence of longer overshoot relaxation. Further, the initial overshoot o
velocity is higher for the 22-kV/cm measurement than the 14-kV/cm
measurement, a result also consistent with calculation. The interpretation is
less direct with the 55-kV/cm measurement, where the initial slope is
significantly below that of the lower field measurement. Shank et al. (198 1)
argue that velocity relaxation occurs during a shorter time interval, as the
results of Figure 6 suggests, and that the measurements are not sensitive to
this time duration. However, because of the increased value of the high-field
overshoot velocity (near 10cm/sec), some variation in the slope of
absorbance is expected. At 55 kV/cm, the influence of the AIGaAs layers,
particularly of the boundaries, and of the finite hole relaxation must be
considered.

As illustrated in Figs. I and 2, the velocity overshoot and nonequilibrium
calculation can be translated into velocity versus field and distance. For
0.12 pm it was seen that the velocity exhibited saturation without negative
differential mobilitv. Device length in excess of 2 pn showed the full steady-
state velocity-field relation. The first published attempts at demonstraling
this length dependence was due to Lavel et al. (19S0). For these transport
measurenents the device structure consists of a microstrip line deposited onl
a lightl\ doped GaAs expitaxial layer (Fig. II). The upper strip has a gap.
on each side of which are heavily doped contact regions. A voltage is apted
across -his gap. The gap is then uriforn:lv illuminated. and cxcess c. -
are assumned to be injected Uniformly a.ross the gap so thtt the electri, :;.!,
across te !ap is sir I ,uy. ) = l(1 L.. where I' is the,, gap \ olta," The
photoi..d uced current is thought to arise from a thin la\er o,_.
Co. dt1.u\I!\ ItIer the surIace and to be a direct measure of the c. rrie r

M ,jei \ ure tile s of tile ploto; duced currCnt hae been ,C.. on
dec,es of dittere tt Iap lerI1 th. The re'uit,1 of meCasturement fom a ap rim,_h

.-D
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Epitaxial Microstrip
Layer L Line

Semi-insulating
Substrate

Fig. i I. Structure ofra systcm for mcasuring velocity ovcrshoot. L = 385pm. (From Laval el
al., 1980.)

of 385pm are shown in Fig. 12. The results show a peak value near the
steady-state value of electron transfer. They also show the unusual feature
of a ratio of peak to minimum current in excess of 3: 1. This suggests that
nonuniformity in the carrier density, and hence in the electron field, is
present, arising either from contact, nonuniform surface depletion, or band
structure contributions. Measurements on the 385-rim gap device have also
been performed under varying incident light wavelengths and intensity with
relatively little alteration in results. It had been suspected that under
sufficiently uniform field conditions a sufficient number of carriers could
have been placed in the satellite valleys with a substantial reduction in
photocurrent. This proved not to be the case, although shorter gap-length
devices did show current reduction. The results for shorter devices are

5

4.-

21-

0 2 ~ . 6 10

£ (kV:C(1)
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E=V/L (kV/cm)

Fig. 13. Photoconducion current versus average electric field for short gap deviccs and
1.55eV photon energy (t = 8000 A). (From Laval et al.. 1980.)

shown in Fig. 13. The 0.4-pm gap device displays no saturation; instead it
shows an almost linear current voltage characteristic. The longer gap device
shows saturation and perhaps electron transfer. We note the higher mobility
at low fields for the 0.5-/pm device. When the photoenergy is increased,
there is a marked reduction in photoinduced current due to injection of
carriers into the heavy mass valley, as shown in Fig. 14. O

The two groups of measurement just discussed concern the measurement
of velocity transients and the effects thereof. All-optical device measure-
ments have also been recently developed. These measurements, developed
by Auston ei at. (1980) and Smith et al. (1981), although "all optical," are
analogous to the pulse generator and sampling gate of conventional systems.
The technique is illustrated in Fig. 15.

In this measurement technique a train of picosecond pulses is split into
two beams. One beam passing to the generator photoconductor causes its
electrical resistance to drop. allowing an electrical pulse to pass toward the
device. A second pulse passes to a sampler photoconductor. where the signal
from the device provides the necessary bias. By varying the relati\e arri'al
time of the optical pulses to the generating and sampling photocondu:c.or
through ime dela\ of the latter. the arrival time of the propagating electricAl
pulse is sampled as a Iu nction of time delay. One measurement of intereK
k as obtained when the dc; ice tested \ as a GaAs FET. Here the uate of .;Ic
device received a si nal Irom the e;erator photocondtIctor. while the ,i,,,l -1

to the sampler photoconductor oriinated at the drai contact. "'I e

.. ~~% V. ( ~ P . %
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Fig. 14. Photoconducion currcnt versus avcragc clectric field for short-gap devices and
1.7 eV photon energy Q = 7300 A). (From Laval el al., 1980.)

measured response as a function of time delay is shown in Fig. 16. The
device was a 0.6-pm gate length GaAs FET and was biased to provide
maximum gain. The dashed curve in Fig. 16 is the measured impulse
response with a 50-f0 coaxial cable replacing the FET. The device response
displayed two characteristic time components: a fast component with a 40-
psec FWHM, followed by a lengthy falling edge. The device response was
obtained by subtracting the circuit response from the sum of squares.
resulting in a response time of approximately 23 psec.

Picosecond ,
Laser I

Oenerazo- De', ice or Sampler 0
Pu'otoco' luclor .',:'rial Photocondictor

Fig 1. 15. .'hcin.i c nt :' .,ccond optica lc % ,'c c lle.ixu c ,
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FET psec
VS - .05 V10pe
V0 -0 v V

OFFET i ' , .It
---50-R COAXIAL

CABLE IN PLACE

Fig. 16. Electronic response of device for the picosecond optical device setup of Fig. 15. The 0
solid line is for the FET, Vs = - 1.05 V. Vs = +0.9V; the dashed line is for a 50-Cl coaxial
cable transmission line in place of the FET. (From Smith et aL., 1981.)

The three groups of experiments just described demonstrate a successful
merging of picosecond optics and electronics as a means of measuring high-
speed phenomena. It is anticipated that the optical-electronic approach will
likely lead to the development of new very-high-speed microelectronic
devices.

IV. Moment-Balance Equations

Essentially all investigations of hot-electron transport in semiconductors
are based on a one-electron transport equation, usually the Boltzmann
transport equation (BTE). Indeed, the overriding theoretical concern in such
high-field transport is primarily the solution of the transport equation to
ascertain the form that the nonequilibrium distribution function takes in the
presence of the electric field. However. for transport purposes. this is not an
end product. since integrals must be carried out over the distribution
function in order to evaluate the transport coefficients. In applications to
semiconductor devices, however, the full solution of the BTE is usually too
complic-.ed to be determined at each spatial point within the device, and
transpor, equations for relevant observables, such as enerev and momen-
Run. are preferred (Grubin et al.. 1982). Such transport equations a.re
obtained bv taking moments of the kinetic equation, and these often rel.cte
dtrect!v co the normal hdrodvnamic semiconducior equations. i Inev.l

.D
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the complicated nature of the kinetic equation precludes solving it
analytically, and the existence of the various moment equations is based
upon a number of assumptions, the most common of which is that the
distribution function can be represented as a displaced Maxwellian.

In small semiconductor devices, the time scales are such that the use of the
most common kinetic equation, the BTE. must be questioned (Barker and
Ferry, 1980). Traditional semiclassical approaches, such as that of the BTE,
assume that the response of the carriers to any applied force occurs
simultaneously with the applied force, even though the system may undergo
subsequent relaxation to a non-equilibrium steady state. On the short time
scale of interest though, a truly causal theory introduces memory effects that
lead to convolution integrals in the transport coefficients (Zwanzig, 1961), so
that the resultant kinetic equation is not of the Markovian type. For the
steady state, this results in a collision operator that depends upon the
frequency of the driving field. Indeed, it is the non-Hermitian properties of
the collision operator that have allowed Prigogine (1980) to postulate a
formal transformation theory to couple dynamics and thermodynamics.

Previously, we have discussed the development of balance equations from
a modified BTE (Ferry and Barker, 1980b), based upon a full quantum
kinetic equation. Direct and general methods for the derivation of such
quantum kinetic equations for the one-electron density matrix, for electrons
in phonon and other arbitrary fields of force, have existed for some time
(Kreuzer, 1981). Such treatments avoid the random-phase approximation
and yield kinetic equations that indeed are non-Markovian. In addition,
effects due to interference between the driving fields and the scatterers are
obtained, leading to collisional shielding of the driving field. as well as to an
intracollisional field effect, which is a disturbance of the scattering by the
driving field. By the use of such a quantum kinetic equation for the
distribution function, the moment equations can be obtained in a
straightforward manner and are modified from their more normal BTE-
derived counterparts. These equations show memory effects, as well as
additional retardation due to the nonzero collision duration. However. the
basis of these equations is still subject to rather stringent approximations.
Indeed. a unique form must be assumed for the dist.ribution function: it is
specilied as a retarded. displaced Max%%ellian of rat-lher special form. It
remains unclear to what extent the form ssume for -,he distribution
function a ffects the resulting moment eL-.!.itions and %k herh... the actual form
. itlfled I* proper ansatz.

The con erns over the detailed form of the m1omen: e iations Call be
r'moved H derivin, these eqtMtions drCctlv front K1 u '.:atttLu transport

wudtion, The exact olutions of the L;,uvillc eqt :; ,i'crIbe the imle
W olution o1 a statistical ensemnble at ; . .,,, lle ,. . ll C\tertll ri ld

M
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is applied. If the rate of intercarrier scattering is high, then after a short time
interval r,. smaller than any appropriate time scale of interest, the evolution
of the nonequilibrium density matrix must be independent of the initial
distribution, and there should be a reduction in the number of parameters
necessary to describe the nonequilibrium response of the system
(Bogoluibov, 1946). It is therefore possible to assume a nonequilibrium
statistical operator that is smoothed in its microfluctuations and from the
very beginning describes the slow evolution of the system for time intervals
that are larger than r, (Zubarev, 1961). This approach is essentially similar
to that of McLennan (1961) and to that suggested more recently by
Procaccia et al. (1979). It has also been utilized by Kalashnikov (1970)
directly for hot-electron problems in semiconductors. By utilizing such an
approach, both the relevant moment equations and the form of the
distribution function itself are obtained directly prior to the extension to the
semiclassical transport properties. In this chapter, we review this approach.
Both the nonequilibrium density matrix and the moment equations are
developed.

When one introduces a retarded kinetic equation to describe the transport
on a short time scale, this retarded equation is a significant deviation from
the usual assumption of a simultaneous response to driving forces, and is a 0
consequence of extending the concept of a causal response to the short time
scale. Causal behavior is usually associated with ignoring a large percentage
of the individual dynamic variables. Indeed, in the derivation of the
quantum kinetic equation, the general density matrix is projected onto its
"relevant", diagonal part, with the terms involved in the "irrelevant". off- ,
diagonal part thus ignored. The density function can be transformed via a
proper correspondence principle into a phase-space function (Moyal, 1949).
and then a semiclassical limit can be taken. Such an approach is not totally
required, however, since in obtaining a generalized kinetic equation. no truly
quantum effects are included. Consequently. the Hamiltonian could as easily o
be a classical one. and the resulting equation would be the same (Zwanzig.
1960). Thus. the density function evolves in the 2N dimensional phase space
(N particles) of position and nmomentum. S

We 'an: to consider a subspace of' phase space. however, whih is

composed of 'hat would be constants of the motion. if the system ,re -

conservati\ , (wkhich is not a. requirement . The constants of the motio:" 'ire ,
(2XV- I )-c:ens~on~1 tori p phase space (i.e.. for one dimension. 1': .

space has :,ko di'mension-s .nd the surface 1 = constant is a closed c-.>.e
Such pa .ra: :egtcrs can bI) .' a ., c enerv 3 . tilc avera e niomen t i. c- \ke
thereforc t : s1ne a >et of para!meters ',, (7%kan ig, 1961

t :,i',,,= t.1 ... }. V'
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and to each of" these corresponds a measurable avcrage

-P.>. (7)

For short-hand notation, we write P = il,. 12..PJ. A parameterized
distribution function can bc defined as g(ll,,) which is the probability of
transition from the initial values g(!l, 0) to the set of parameters P. at time t.
Specifically, the average in Eq. (7) is defined by the first moments as

Q,,1= f P,,g(I', t) d). (8)

The individual Q, satisfy transport equations. We want to develop these
equations themselves and shall do so for the quantum transport case, where
achievement is easier. In part, we must first work from the equation of
motion for g(P, t) instead.

In particular, there are two situations in which the dynamic systems of
interest will show the necessary property of weak instability and evolve into
statistical behavior, which shows up on the macroscopic level as irreversi-
bility (Prigogine, 1981). One is when the system is mixing, and the second is
when there is no true invariant of the motion other than the energy. In these
cases the dynamic system has undergone strong chaos, and individual
trajectories no longer exist (Arnold and Avez, 1968). Our time scale t, is
taken to be the time for this weak instability to fully form, and we presume
that this arises owing to carrier-carrier interactions. Then, for time t > r,
correlations with lifetimes less than T, can be ignored and the state of the
system may be described by a reduced set of macroscopic observables Q,,(t)
which are the average values, over the nonequilibrium ensemble. of the set
of dynamic variables Pm. These dynamic variables, and their conjugate
forces f (t), may then be used to define a nonequilibrium statistical
ensemble. The approach is based upon Poincare's theorem on integral
invariants generalized to quantum systems (Zubarev. 1974). Thus. the
s\stem density matrix should be constructable from the principal invariants
ot the system. Additionally. an auxiliary (local) equilibrium density matrix
,: is defined as a quasi-eqUilibri urn quantity. This latter function serves as an

idealized initial condition for the s\ s'em after the randomization. character- S
.zZed bv rTI. has occurred. and from hich the systenm e olves under dtynamic

. governed b\ i's Hanilion'ia1. -his means that ..,t all times . . the
- : equilibri LIT11 e itv m tti , . h,: l ust sat is ' t L.et Lio ill',- N't111 i11

10 ,!,tSion. iL ' lI0,_CoIIal of"/b, "pk

: ow Seemts reas,<onabl 0 t 11 Ie ioneqtilibrt;::m'n.'.i .+erator.

, lc is saootel:c in lhe S I fc o lC u .natiolns aIll . fro :o the bS\ I.:am 0! : J 11
*..descri nes ne: slow. ur'C rs ' liiino h ~~l.~' ii i

1%+
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balance equations necessary. We therefore consider the noncquilibrium
distribution of conduction electrons, in a semiconductor in a strong electric
field F(x). which are interacting with the lattice. The Hamiltonian of the
system can be written as

I i. + 1i. + "L + ",1., (9)

wherc H, and tL arc the Hamiltonians of thc free carriers (in the cffective
mass approximation) and the lattice, H,,. describes the interaction between
the carriers and the lattice, and

HF F(x) dx (10)

is the potential due to the external field (we ignore the dynamic screening of
this field).

Within a time rT,, the energy and momentum that the carriers obtain from
the field are redistributed among themselves due to carrier-carrier
interactions. Thus, the distribution function describes electrons that are in
equilibrium with each other, but not with the lattice, and, on a time scale
greater than rl, the system may be characterized by the average values of
the set of operators P,(x), defined by C

P, = (H., P,, N, PL, HL + HcL}, (!1)

where P, and PL are operators of total momentum of the electrons and the
lattice, respectively, and N is the carrier number operator. The term H,
contains the carrier Hamiltonian, the coherent part of any interaction with C
the environment, and the carrier-carrier interaction, although we only
explicitly retain the first of these in a renormalized effective mass treatment.
However. it is assumed that this term is diagonal. Although we have
included the terms for the lattice, it will be assumed that the lattice remains
in equilibrium. The various Pm satisfy the equations of motion as :

dP,Idt = (i='h)[H. P,] = (i/h) /P,,. (12)

where the caret over H signifies a superoperator. Then. for a homogeneous
Sst em (we may easily extend this to an inhomogenious system).

f1) = F In , + I,.,. (13b)

= ( ,)"

I = I'.i . (1l3d)

I .- t/ = - I/.,,). (1 1
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where

P'.,(L) = (ih)l!.LP.. (14)

We now introduce a set of time-dcpendent parameters f.(t) (which are c
numbers) constructed to be thermodynamic conjugates of the Q. as follows:

LW( = ( -&,. -~ - ,,, "vd).o, -} (15)1

where P, is the inverse carrier temperature (= Il/k.T), Vd the drift velocity,
and it the chemical potential (or Fermi energy), and each of the f. is a
homogeneous function of i. Heref,. for PL is zero. since the lattice can have
no average momentum, and f = I lkT, where T is the lattice temperature.

The asymptotic, time-smoothed quantities B.(g) may be defined from the
P,. and thef., as (i > 0) (Zubarev, 1974)

Bt) = s dt' e"J,(t + t')P,.Q'), (16)

where

Pm(t') = e -il/hP.(O). (17)

The quantities Bm satisfy the Liouville equation in the limits s-0 and are
the quasi-invariant portions of the products P.fm(t) with respect to the
evolution under the Hamiltonian H. Thus, they are integrals of motion in
this limit, and any total statistical operator constructed from these
quantities will also be an integral of Liouville's equation. The operation of
taking the quasi-invariant part is equivalent to taking the causal response, a
treatment used to assure that retarded solutions are obtained (Gell-Mann
and Goldberger, 1953). To assure that f. and Q. = (Pm>' (the t superscript
denotes a time-varying average, i.e.. an ensemble average evaluated at t) are
thermodynamically conjugate, we require

(P.>' = (Pm,>, (18)

where K.>' denotes the average taken over the nonequilibrium density
operator p(t) and (-> indicates an average taken on the quasi-equilibrium
densit\ operator p),. both of which are defined shortly.

We can now % rite the nonequilibrium density operator in the form

p(i) = exp ) - Il.(!), (19)

It p h-c 20
(I nlr~~- ' i?,,20)
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The choice of Eq. (19) for ptt) assures that this quantity reduces to the

generalized Gibbsian grand ensemble (or grand canonical distribution) in

the thermal equilibrium state and results in a positive entropy production in

the equilibrium and the nonequilibrium states. Indeed, by defining the

entropy operator as

S(t,0) = Oo + E P.Mf(1), (21)

with

00 = InTrexp{ - P.W.(t)}, (22)
oin

we can combine Eqs. (16) and (19) as (Kalashnikov, 1970)

S0
p(t) = exp{- S(, O) - f 0 dt'e"'S(t + t', t')}, (23) -

after an integration by parts and the extension of Eq. (21) to

S(t + t', t') = Y {P(t')fm(t + t') + [Pm(t) - <PmY]f.(t + t')}. (24)
m C

Clearly then, we may define the quasi-equilibrium density operator as that

local operator for which = 0. Thus, we are led to

pi(t) = exp{- S(t, 0)} (25)

for the quasi-equilibrium operator. Here, the entropy S(t, t') is a true two-

time function since it represents that quantity in a nonstationary environment.

The total density matrix of the real system, p(t), deviates from the quasi-

equilibrium due to the microscopic relaxation processes in S that occur in a

small, coarse-grained region of the system. Yet, the quasi-equilibrium

operator p,(t) is determined from the actual p(t) by the fact that the state 0

parameters P,, involved in p,(t) are determined by the requirements of Eq.

(18). The difference between p(t) and p(t) relaxes toward the latter due to

the scattering processes and can be treated within a perturbation expansion.

much as in the interaction picture.

In the expansion of S in Eq. (24), we can replace P, by the set of Eqs. (IS) -I
and )'. from the expansion

- • vfJ,,,I + - (P

01

,K , €7,,r, ', ', :¢ZeZ a,€, ,'W _" " ":*6
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where the 6 indicates a functional derivative. In general. Eq. (13) tells us that

the I'j can be expanded as
=Yj>,j',V + lb(-1(27)a

Wc further notc that

= -KHo fzP,1) =;([HO, fPI]) =0, (8

where

110 = H - HeL,

since )fcfP. commutes with the quasi-equilibrium density pl. Differentiat-
ing Eq. (28) with respect of f, yields

+ (P.)>
~~~i =xP)+ZeAn j 0. (29)

Taking into account the thermodynamic relation (Zubarev, 1974)

e____ 0 2 ln(4t) 0) _ 8PI)

we can multiply Eq. (29) by 8fJ8(<P> and sum over 1. As a result we obtain

8Yf__i VP + =0, (30)

where we have used the relation

f= ~.(31)

By means of Eqs. (310) and (29). we can rewrite Eq. (26) as

if

This equation can be re.,arded as a kinetic equationl for the %ariables /', and
complements the set oi kinetic eqUationS for 1).. given earlier.

't s obvious that (A-s o both first and second order in 1 L aPr i
Eq. 124). Therefokre. -o obtain the b~fatnee equations uip to sLcond order inl
the electron -phonon ::'teraiction (the fi rst nionva nishine, order j. %%e L!se, he-,
folhw~king u!erati'ke evnsof lthe density matrix

OjA 

% N7)O
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)

where S is given by Eq. (24). We obtain Eq. (33) in the following fashion.
First, we note that from Eq. (23) we may write

p(l) = e- A - .  p(t) = e - A.

with

A = S(t, 0), B = d' (t + 1.,').

It is convenient to introduce an operator K(r) by means of
- e= t)eA ,  (34) "

which is equivalent to the operator equation

K(r) = I -Jd K()eA Be (35)

From this relation, it is recognized that K(t) is the evolution operator in the
interaction representation. Finally, with the change of variables r -- , --- t,
Eqs. (34) and (35) become Eq. (33). We can now use this to evaluate the
averages and compute the balance equations.

To begin, we rewrite Eq. (24), using Eq. (27), is a more simple format:

+', ) = 0 {P.(L)et)f.(t + ') + [Pm(t') <P>'"]

m+
x I P,. -Vf. + 5f L 0

= f{P,(L)(t)f,(t + 0 + V O36)
m

so that

dt'Su - t'.t') = d'YPm(L)fm( +'

+ Y [P,,(O) - KP.O)>']f,(t) 37)

in the , m' iimi. Taking f(t) = 0 for i < 0 (fi - N = 0 for t < 0). .:,1
carr, o,: .:" axera c o\cr Eq. (13) as (after ch:lngi, the int,..:on
.ari%.bc

,. :: ,_ ... ,- + '.', -,,I
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where the quantum correlation functions arc delined by

(A: B(t'))' = -N- ( -(it;p'(39)

in the absence of spatial correlations. Here B(t) evolves under the total
Hamiltonian according to Eq. (12). For N(E> = (iiQ>. we find the energy
balance equation to be

d(<E>_ eF o'" "
d(t -n < P > - f dI'i<fI(I,:.lI( - 1,11(t

f-i(t) Ni" (P; {H(0) + VPd()" P(0)}X. (40)
Nm:

where f?; =/f, -/7. The momentum balance equation becomes

Ad . I P
,n- - (PI= eF - dt'(PC(L);[ f(t - 0;tiLiW'

+ AM<( - ")vd(f - )- PO LP()}1

e F
- f()- -(N; {H(O) + vd(t)" Pe(O) '. (41)

Over a broad interval of the electric field strength. the kinetic energy
associated with the electron drift velocity is much smaller than the mean *

energv of the carriers that is, mvd 2< kiT, In this case, we may neglect the
cross terms in the correlation functions such as Jb,(t.fi,(L) or .NH, just as in
thermal equilibrium. Then. the correlation functions simplify and the
balance equations become

d =E)_eF'd _ dr' fJ (t - r) lht' 1t1 ; I',.L(t (42)
di

I.0ti -- it 1 dt' ;,(t - t')%,, :([ ""

I i;. cniljnia, correlation lunctionis arc col lsioi rl i. ,n ncIor"
::. (/ ,,ri/i,. 1964). and hc trrI1 (1 ' _ c(Pt.i1IO l 1 -, :;i,ir to ta:

;!. - cII 1, ' : iti oiOls arc soinc dl* :ci iH l -,.' .'I hJ 1,.ctor t,

.. . ... r v
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negligible for i - oo but is significant during the initial transient phase and
appears even in careful Monte Carlo calculations. cvcn in thc semiclassical
limit. That this memory effect should appear in the energy equation follows
from the fact that E = JkT, = J& (when the drift energy can x
neglected). Thus, the temperature is, in cffect, a measure of the fluctuations
and cannot be changed until the correlations of these fluctuations is brokcn
by the field.

The correlation functions are generally written from Eqs. (40) and (41) as

J = t +P(L~ SZfi(t + 1 (L)()ers

Now,

Y e-'f 1 (i + 1)PaL(IV)efS = i-efS[HL((),fI(I + ,)P,]Cts

= d {e_SHL(t,)eS},h dA

and

1= Pm(L f: d (e - feiL)e})

A 0

= y<[H,,(t'). [HL. P]])t

- ."\t, Tr{ P [HL. [HLt'), p(t)]] ]. (IL )

V. The Correlation Functions

In th.- Ia, : form in Eq. (44). he correlation IflCtioln h: tIlLh Sl : 2.

form o; a d.'.tv ftinction for the genera lized parameter l,In particulr. :
'c rev . te c (44) as .1.!

0
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(ien 9 can be recognized as at collision superoperator and is fornnally
equivalenit to that initoduced by Van [love (1955) and by Prigogine and
Resibois (1961). In this regard. wc cain say that thc evolution of K is
governed by at projection into the space of correlations, and thc consequent
evolution of it lies in a subspace that includes aI portion of this spae of
correlations. Thc role of 9 is thus related to thc building up of correlations
fromt asymptotic averages and sorts out the noise correlations that have a
long-timec effecta~nd manifest themselves at the mai~croscopic level (George el
id.. 1972). Now. ats is clear from Eq. (44), KQt) is. in general. it function that
involves only the Interaction /I,, except in (lie resolvent producing the time
cvolution01. Since thc resolvent also involves I/,, from Eq. (17). we expect
that J involves not only relaxation effects, but also self-encey corrections,
particularly in high-density situations much as those found In picosecond
laser pulse experiments. In addition, we expect that the presence of high dc
electric fields will lead to interactions between the field and the scatterers-
ain Intracollisional field effect. These effects are discussed later.

A. Self-Energy Corrections

I n the presence of a strong monochromatic source, one, in general, would
expect saturation due to state-filling also to be at factor. State-filling of the
conduction and valence bands, as opposed to band-filling (Zitter, 1969).
arises from monochromatic radiation and results in a 6-function-like spike
(in energy) in the distribution function (Hearni et ali., 1962). The occurrence
of such state-filling depends upon the generation rate and the length of time
that the excitation occurs in a specific energy state. Normall,. it is to be
expected that Such effeCcts Will occur tinder picosecond laser pulses. although
one- %ould expect the time widthi of the resulting satura ted absorption to be
of the same scale as. the laser pulse. In Ge. It IS fouLnd that the- state-filling

th.: ould normally be expected 10 Occur Is r-cstricted by (h,- process of
enerv-~p zari owing. or band renormialization ts It I.; somimnes called.

In,:.:ced by the elect ron -hole pairs (Ferry. 1978).
:;r'-Lap n irro\\ ink' at hi ch concent rations wof electrons an,4 holes arises'-

p. fiiI rom i %o rm icipal tm1CCJmnlsmlS ct-;e: or e\c:-.znge energ\
nu osto the ha idgal p!Idl eliec rer;~aed :!ts of" tae;

fly> [CLILi~i~iC~TheL inI1Tok%1lit of hle -nrC C1 1 duz to I . i ft eract' ne
a. o th tre erier li~ keu cn~ierc 2\Ink 'on I'-Th) 1Wine a

:i'I aII ::1'1(e thieiiiI Hi-' itodcianu1 otcl flits can a11lter the
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that at low temperaturc the gap closure is given by

A, = (?nr.,,)Ik, 1-[ - tan -',l. (46)

where a = ;/r"/12 and is the screening wave vector. Now. Eq. (46) is a 7tcro-
temperature approximation and its validity at higher tcmperatures is
restricted. However. 4-. reflects primarily an cstimate or the number of

interacting carriers within the conduction band (or valence hand). An
estimate of this cffect can be round by deriving, k,: from the Fermi energy.
given by

1: - E = k, 7' In(n/N,). (47)

where
N, 4( 2m,/,',,Tjlh2)"" (4,8)

is the effective density of states in the conduction band and T is the electron
temperature. 0

The shift in the phonon frequencies, induced by the free carriers, also
causes a gap narrowing. Brooks (1955) relates the energy-gap variation to
the change in the lattice vibration frequencies from a), to (?)' when the
electron-hole pair is excited across any particular gap. The gap change
arises from a change in chemical potential and can be expressed as

AE. = Z [f(o,, ) -fQo,.0)], (49)

where f(co. n) is the standard formula for the free energy of an oscillator of
frequency 09, which itself is a function of n (or p). The variation of the energy
gap at high densities (high temperatures) for Si was shown by Heine and
Van Vechten (1976) to be dominated by the anharmonicity in the transverse-
acoustic (TA) phonons. The TA modes depend critically upon the covalent
nature of the bonding in the diamond structure. Without this bonding. the
TA modes go unstable. The generation of electron-hole pairs removes bond
chare,. thus destabilizing and softening the TA mode. It is sihnificant that 0
estimates of the peak electron density in picosecond laser experiments at the
dama,_e threshold is within a factor of 5-8 of that necessary to completel.
des:.!blize the TA mode. Heine and Van Vechten have showkn that tie
den, '. dependence of the anha rnionic TA mode may be expressed as

I [ - ;.j.; 1  :* ~-I ~

e8e .= . - I i, the hond-charee ;hifh per clectron-hole :,.ir.," = 2

We ~e r;c , co ,:i :'.: of the cailpeti1I f/-l11 phase. and .\ . the a:,:::;,

d0::--4
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As already mentioned, thc strong cncrgy-gap rcnormalization leads to a
gap narrowing that is sufliciently strong so that state-filling probably does
not occur. Indeed, it has been suggested by Wautclct and Van Vcchtcn
(1981) that under extreme conditions where 7; > T, anomalously large
changes in the bandgap will occur. This will, in turn, lead to a gradient in T
due to the large rate of phonon emission that is localized and to gradients in
the electrochemical potentials of the excited electrons and holes. As the
cnergy gap is a minimum at thc sitc of the highest density, these gradients
oppose the normal diffusion of the excited carriers, since the carriers arc
essentially sclf-trappcd in a potential well.

B. The Intracollisional Field Effect

At high fields, such as will occur in very small devices, the collision
duration is significant and correction terms appear to account for the
nonzero time duration of each collision. If the instantaneous collision
approximation that normally is used is relaxed, an additional field
contribution appears as a differential superoperator term [see, e.g., the
discussion in Ferry (1980)] in the collision integrals evaluated in the
momentum representation, resulting in an intracollisional field effect
(ICFE).

The ICFE can be partially understood by a simple example. In the usual
case, the collision occurs instantaneously, so that the carrier enters the
collision sphere at a point a and instantaneously exits at a second point b.
However, the collision does not occur instantaneously, but requires a
nonzero collision duration re. In this case, it can now be accelerated by the
field during the collision. Thus it exits not at b, but at Y' some time A! = rc
later. As r, becomes comparable to r, the mean time between collisions, this
ICFE will have a significant effect on the transport dynamics. particularly in
the transient-response region.

The mathematical details of the ICFE have previously been given by
Barker (1980). so we shall not go into these details here. Rather. we shall
gime some of the supportive evidence for the observabilitv of the effect. In
%crv large fields. such as can occur in SiO, near breakdown, the ICFE can 
indeed be vcry signiicant (Ferry. 1979). Two major modilications o'. the
sca-:.tering integral occur as a resu!t of this intracollisional proces.s. Firs:. the

toia! energ.v-conservin, o funCtioII is broadened 1y the presence o,' the
ec c:rnc tield. Second. the threshold energy reqiiired l'Or tile emission o! an
opt c, l phonon is modied. Much causes a shift (illeiIe.e) ot :f ,e 6
;ictn. This latter process is e l&'ilv un elcrstood ill ph.sc'Il tr:11 l:: the

,'1l1-:01 Ot all opica - phllonl. %khcre the elect roll is scaicred l ie

LRIM
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Fig. 17. Ionization rates in SiO2 . The curves are theoretical, and the solid curve includes
effects due to the intracollisional field effect. The data are from Solomon and Klein (1975).
(After Ferry. 1979.)

electric field, the field will absorb a portion of the electron's energy during
the collision, and hence a reduction in energy loss to the lattice will be 0
favored. The opposite effect, an enhancement in energy loss to the lattice
occurs for emission along the electric field. These effects can be incorporated
into the appropriate scattering integrals in the iterative technique. and this
has been carried out. For electric fields above 5-6 x 106 \ cm. the
broadening and shift of the scattering resonances produce a noticeable etfCt-
upon tllo %elocity-field relationship and cause a reduction of the polar
runa\\. fiold. This reduction in threshold can be observed in the impac
iong/a' on raies in SiO.. In Fig. 17. we show these rates as measured b\
Solomon and Klein (1975) and as calculated earlier (Ferry. 1979). It i

nece,!-,kr to incltide effects arisin,, from the ICFE to adeuatelv fit theor\ to
ep e Pi 2 .1C



446 D. K. Ferry. If. L. Grubin. and G. J. larratc

Rcfcrcnccs

Arnold. V. L. and Avez. A. (1968). *Ergodic Problems of Classical Mechanics.~ Benjamin.

Auston. D. II.. Johnson. A. M.. Smith, P. R.. and Bean. J. C. (1980). App!. Ph~rs. Lett. 37. 371.
R. Barker. and C. Jacoonil. cds.). pp. 126-152. Plenum. New York.

Barker. J. R., and Ferry. D. K. (1980). Solid-State Electron'ic. 23, 5 19-530.
Bogoliubov, N. N. (1946). "Problem Dinam. Teorii. u. Stat. Fiz." Moscow. USSR.
Broers, A. N.. Hiarper. J. M. E.. and Molzen. WV. W. (1978). App!. Plays. Lett. 33. 329.
Brooks, H. (1955). Adv'. Electron. Electron P/irs. 7, 85.
Doob, J. L. (1942). Ann. Math. 43. 785.
Elliott, M. T.. Splinter. M. R.. Tones. A. B.. and Reekstin. J. P. (1979). IEEE 7ias. Electron

Devices ED-26. 469.
Ferry. D. K. (1978) P/kir'; Rev. 8 18, 7033.
Ferry, D. K. (1979). J. App!. P/irS. S0, 1422.
Ferry. D. K. (1980). Its -Physics of Nonlinear Transport in Semiconductors** (D. K. Ferry, J.

R. Barker. and C. Jacoboni. eds.), pp. 577-588. Plenum, New York.
Ferry. D. K., and Barker. J. R. (1980). Solid-State Electron. 23, 545-549.
Ferry. D. K., and Barker, 1. R. (1980). A. P/irs. Chem. Solids 41, 1083-1087.
Ferry. D. K., and Barker, J. R. (1981). J. Appi. Phys. 52, 818-824.
Franz, W. (1958). Z. Naturforsch 13, 484.
Gefl-Mann, M.. and Goldberger, M. L. (1953). Phys. Rev. 91, 398.
George. C., Prigogine. L., and Rosenfeld, L. (1972). Nature 240, 25.
G6tze, W., and %W6lfle. P. (1972). P/iis. Rev. B86, 1228.
Grosvalet, J., Motsch. C., and Tribes, R. (1963). Soli-tt Electron. 6, 65.
Grubin, H-. L., and Ferry, D. K. (1981). 1. Vac. Sci. Tee/h. 19, W40544.
Grubin, H. L., Ferry. D. K.. lafrate, G. J.. and Barker, J. R. (1982). In "VILSI Electronics

Microstructure Science~~ (N. G. Einspruch, edI) pp. 198-301. Academic Press. Newv
York.

Grubin. H. L., Kreskovsky. J. P.. lafrate, G. J.. and Ferry, D. K. (1984) In *"Proccedings, of the
Workshop on The Physics of Submicron Structures." Plenum. New YoIk

Hearn, C. J.. Landiberg. P. T.. and Beattie. A. R. (1962). I Proc. 61h 1'::. Coif. Pllis.
Senzicotid. Inititute of Ph% sics. London. United Kingdom, p. 857.

Heine. V.. and Var Vechten. J. A. (1976). P/irs. Rev. 8 13, 1622.
Hunter. W., HoIioQka,. T, C.. Chatterjee. P. K.. and Tasch. A. F.. Jr. (1S. FEE Electu'

Det . L'w ED)L-2. 4.
lnkson. J. C. (197(o J Phi .. ('9. 117.
Kalashniko%. V. P (19701 I'hi'_z 44S 93.

Kreu7.er. I I J. I i) -\,~Nci%,lhrnun, Ti.'niodynanics and I is Statist:C c,_ tIi

Kubo. Rt (1;7 .1 P,:' S,,, 12~ . 570
Kuho. Ft (197) 1, ''I .- in l'ii Ws ' I: Tra.nsport Plici'nmnan. .tiN .~l

JNI., tin cc, j. ;,:n ccr- Ii B.crhn aind Nc%% ) ork.

1.cr.I. .niJ.!n,: i %.i. 1) 1K, Ij981)~ J. P'hi (u/h.; 10'. 1 421 S u::,

V' o l- I . I rc P..-- 1 lI ;1 8

Vj IA lq.I) " "1



r'r xr nxna U.,n

13. Transient Transport in Semiconductors 447

Moyal. J. E. (1949). Proc. Cambridge Philos. Soc. 45,.
Prigogine. 1. (1980). "From Being to Becoming.- Freeman. San Francisco.
Prigogine. 1. (1981). In -Order and Fluctuations in Equilibrium and Nonequilibrium Statistical

Mechanics. XVflth International Solvay Conference on Physics" (G. Nicolis. 0. Dewel.
and J. S. Turner. eds.). pp. 35-76. Wiley. New York.

Prigogine. L.. and Resibois, P. (1961). Physica 27,629.
Procaccia. L.. Ronis, D.. Collins. M. A., Ross, J.. and Oppcnhcim. 1. (1979). Plays. Rev. A 19.

1290.
Ruch. J. G. (1972). IEEE Tratts. Vecctron Devices ED-191 652.
Shank, C. V., Fork, R. L.. Greene, B. L. Reinhart. F. K., and Logan, R. A. (198 1). AppI. Phis.

Lett. 38.104.
Smith. P. R.. Auston. D. H., and Augustyniak. W. M. (198 1). AppI. Pit js. Lett. 39, 739.
Solomon, P.. and Klein, N. (1975). Solid State Commwa. 17, 1317.
Ting, C. S., Ying, S. C., and Quinn, J. J. (1976). Plays. Rev. Lett. 37, 215.
Trofimcnkoff, F. N. (1965). Proc. IEEE 53, 1165.
Van Hove, L. (1955). Physico 21, 517.
Wautelet. M.. and Van Vechtcn, J. A. (1981). Phays. Rev. B 73, 5551.
Zimmermann, L., Lugli, P., and Ferry, D. K. (1981). 1. Phys. Colloq. (Orsay. Fr.) 42(Suppl.

10), 95-101.
Zitter, R. N. (1969). App!. Plays. Lett. 14, 73.
Zubarev, D. N. (1961). DokI. Akad. Nauk. SSSR 40,92. t(1972). Soy. Phys. Doki. (Engi. Transi.,

6, 7761.
Zubarev. D. N. (1974). "Nonequilibrium Statistical Thermodynamics." Consultant's Bureau.

New York. a
Zwanzig. R. (1960). 1. Chtem. Plays. 33, 1338.
Zwanzig. R. (1961). Plays. Rev. 124, 983.
Zwanzie. R. (1964). J. Chtem. Phys. 40, 2527.



" b" Reprint 14

Structural dependent electrical characteristics of submicron gallium
arsenide devices

H. L Grubin and J. P. Kreskovsky

Scientific Research Associates. Inc. Glastonbury. Connecticut 06033

(Received 31 January 1984; accepted 9 May 1984)

Numerical studies of the transient and dc electrical behavior of submicron N *N - N + gallium
arsenide structures are discussed. It is shown that the transient results are dominated, during the
first fraction of a picosecond, by displacement current contributions. Velocity overshoot is less
important. Under dc conditions and high bias levels, submicron effects may be masked by
transport within the N + regions.

PACS numbers: 85.30.De, 72.80.Ey

I. INTRODUCTION Most of the calculations performed for this paper are for

Recent activities in the area of submicron transport in com- the one dimensional structure of Fig. 1, in which the N-
pound semiconductor structures have tended to focus on the region is assigned a nominal doping level of 10' 5/cm 3 and the

two and three terminal N+N-N diode." The diode has N' region is at 10"' cm3. There are conceptual problems

four interfaces along the principal direction of transport- with this jellium model, particularly on the submicron
metal/N+, N+N - , N-N+,and the downstream N+/metal scale," but they are ignored here. The length of the N- re-
interface. In addition, if gate contacts are included, there are gion is specified at the doping level of 10"/cm and varied
the transverse interfaces. It has been argued that the struc- from 0.416 to 0. 116 p. The entire structure is fixed at alength
ture is capable of supporting ballistic transport,4 space of l.Op. The design of the structure dictates that nonuniform
charge limited transport,; reflections at the downstream fields and charge densities form within it. Thus, the relevant
N-N + interface, etc. Its dc electrical properties have been quantity that relates to experiment is current density

measured6 and time dependent electrical measurements are J(t) = - eN(x,t )V(x,r), rather than velocity. It is here that
01 now possible.' Each of these experimental studies has at- one of the more significant aspects of the study appears. A

tempted to determine whether nonequilibrium transient
transport or velocity overshoot is present in the N+N-N +

structure. There has, however, been uncertainty in the inter-
pretation of the experiments, primarily because the presence
of injected space charge can also yield current levels in excess c.n,,
of the steady state uniform field values. Thus, when experi-
ment yields higher than expected current levels, are they due
to velocity overshoot, space charge injection, or some combi-
nation thereof? These questions are addressed in this paper
through studies of the dc and transient electrical characteris-
tics of the N- N- N ' structure.

The studies involve numerical solutions to the first three
space and time dependent moments of the Boltzmann trans- I
port equation for the semiconductor gallium arsenide. Each C " I
of the following five questions has been examined: (1) How
are the electrical properties of the N N-N + structure af-
fected by the length of the N- region? 12) Will transient
electrical measurements reflect velocity overshoot, or are the
measurements a reflection of displacement current contribu-
tions, only to be followed by a weaker overshoot contribu- 1 /
tion?1 Flow important istheshapeoftheN'N - interface, i o_
vi a is theelectrical propertiesof the structure? (4) What are " '
the consequences of eithcr deliberate or accidental variations - - - -

C in the doping profile? (51 To what extent will the ratio of the .
N -/N - dopimne level affect the electrical characteristics of
the .,tructure' Each of the five questions is addressed in the
diicus ion below, although particular attention is given to 1-1(; 1 (.? Sketch of the N - N N "sruclurr _.-d for the inuittons it , '

Ti 2 ir,1 d iVk T 2(i3'r J '. *dp~. Sept -: m-1 _ m r I I-; I27 --

i2 i V~c S:Technol 8?2 (3), J_', Sept 1984 0734-21 IX/84/030527-0i', 00 1 54 Arneric3r :-..m Society 527
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sumimary af thie results (billows and is suppoteld by dbe do- Anothe importaunt feature cionceirns th eculeO of mes-
tailed description of th calculations. five differential conductance. It is known from uniform fd

studies that the long-time asymptotic solutions to the gov.
IL BRIEF SUMMARY OF RESULTS erning equations exhibit the presence oftgative differential

For the time dependent calculations, the cu.raet transient mobility in the field dependent velocity. For the calculations

shows an ostensible similarity to that commonly regarded as reported below, in which current density iather than veloc-

the signature of velocity overshoot. For the latter the me" ity is sought and where the fields are nonunifonnly distribut-

carrier velocity shows a rapid rise to a peak value in excess of ed. there was no evidence ofnegatiue differentialconductivity.

the steady state value. After a time duration ofa fraction ofa
picosecond. the velocity descends toward its equilibrium III. THE NUMERICAL SIMULATIONS

steady state value. This decrease is associated with differ- The nonuniform field calculations were performed for
ences between the energy and momentum scattering rates gallium arsenide subject to two-level transfer with the pa-
and is enhanced through electron transfer. For the rameters listed in Table 1. The restriction to two-level trans-
N N - N structure, there is a similar transient associated fer is computational. For one-dimensional problems, seven
with the current density where the peak current is reached partial differential equations including Poisson's equations
within a fraction of a picosecond. Here. however, the calcu- are solved. For three-level transfer, three additional equa-
lations show that initial transient is associated primarily tions are required for one-dimensional constraints. Further,
with the rearrangement of the self-consistently calculated in- for the range of electric field values considered in this paper.
ternal electric field. The initial current transient is thus pri- transfer to the X valley is relatively insignificant.
marily due to displacement current effects. Transient over- For the parameters of Table 1. the transient and steady
shoot contributions while present, become effective at later state calculations were performed for six different values of
times and are significantly below their uniform field predic- bias; from 0.25 to 1.5 V. in steps of 0.25 V. The scattering
tions. events considered in the calculation are listed in Table [.

Steady state, time independent solutions are also ob- Ionized impurity scattering was ignored. as it would be insig-
tained. These are the "long-time, solutions following the nificant within the N- region. Its contributions would, how-
transient. In determining the time constants involved in the ever, be of importance within the heavily doped surrounding
approach toward steady state, it is noted that momentum regimes. Thus, the current levels achieved in this calculation
relaxation often occurs within a picosecond time frame, will tend to be somewhat optimistic.
while energy relaxation takes somewhat longer. For the cal- The equations used in the study have been discussed ear-
culations with L,,_ = 0.4161A. steady state in the presence of lier and are
nonuniform fields occurs after a time-duration of approxi- 43a.n
mately 13 ps. The steady state solutions show the excess dn + V. (vn,) =j"" (1)

carrier velocities discussed by the present authors' and oth- 't - )Coll

ers.2 ' Of importance here are the steady state current vol- dP ,
tage characteristics which display the anticipated nonlinear at
behavior associated with space charge injection and field de- aP, (
pendent mobilities. = -en F-igradn,kT, (2

Because of the intuitive relation between the space charge a
injection properties of the submicron N+N-N' structure 3 wf, + v. v W
and those associated with Child's law, a power law Ja u" at
was extracted. For the N N-N structures the calcula- = - en,F- v, -V • t-nkT - div a Xv,
tions revealed a low voltage power law where y 1.5, as corn- 'wF
pared to the Child's law relation where r = 1.5. For higher - div Q, + (3)
bias levels, the power law was considerably below 1.5 and is a

consequence cf the field dependent mobility of the gamma for particle, momentum. and energy b_,!ance. respectivel.
alleyinealh3L,,narsenideandthepresenceofelectrontrans- In Eqs. (2) and 3.. Pn u W, = n,(lI/21n,V

fer. The extent to which a reduction in the rate of charge + 3/2k T, l, ais a stress tensor and Q is of the form to repre-
injection into the N - region is contributing to the decreased sent a flow of -heat.- St,:tly. both of these terms arise from
power law w-2s not determined, the nonspherical nature o" the distribu'ion function. They

It is impor-t to note that the detailed transient reported are treated phenomenot.ically throuch equivalent macro-

in this stud. is for the NN-N structure. It would be scopic constitutke relations
incorrect to assume that the transient would be similar to, dv'
e g.. a unifor-m!% doped structure with nonuniformities re- o'.= - , -1

suting from boundary conditions that reflected, e.g., the d T
presence of the metal contact. Calculations for the latter = - w grad 7 .

structure ha'.e been completed' and while the initial tran- Justification for the use c!* Eqs. (4) andi t5 is considered else-
sient reflects .oth displacement and conduction current con- -Ahere. It is noted that "i s diniensior.:!ly a %iscou coefli-
trbutonN. t.-. 4:ails ofi he time tran'sients are dependent ii crent and A is dimens, .- a thermi .,)ndu.tn'. coetii
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Numbe ~quvalent 1 4

Effective ats (a.1 0.067 0.22
-L seliaation (M 0.3

POla Opticall scattering
Static dielectric conamt I9
High frqec dielectric constant 10.92
LO phonon (cvj 0.0354

r-L scattering
Coupling constant Iev/cmj OSOOX t0,
Phonon energy (e-1 0.0278

L-L Scattering
Coupling constant (ev/cm) 2.OX 10'
Phon- energy (-1j 0.0354

Acoustic Scattering
Deformation potential (evI 7.0 9.2

Nonpolar Scattering IL I
Coupling constant (ev/cml) 0.300x 10'
Phonon energ (cv) 0.03430

Miscellaneous
viscosity coefficient (I l.ISXIO-'g/cns
Thermal condition coefficient (r') 4.14 X 10-3 J/em s K

Boundary Conditions
X=0 x=L
N, = l0"/cm, Second derivatives of aUl quantiis

are zero except the potential. whicht
Nr = equilibrium value is specidw.

ax:

T= T.= 300 K

In addition, Poisson's equation is solved lation is performed in tmo stages. The first involves obtaining

e a steady state solution at 0.01 V. For thetc-cond, using this as
e ! (17r 17 - no), (6) an initial condition the bias is raised in one time step. to 1 .0

6V. Application of the bis in on 'e time step replicates the
wher C.~L'a~c ,~ enoe te poulaionof te F Land procedure of most of the uniform field calculations.

background le sWith the incorporation of Eqs. (4) and (5), As seen in Fig. 2, the current display .s an initial pek at
the momentum a-nd energy balance equations become sec- approximately 0. 15 ps. followed by a drop in current and a

ond rde in nd empeatue. Slutons o tese subsequent rise toward a steady state value. For uniform
equations for tht s,-t of boundary conditions listed in Table I field calculations in which thle voltage is increactd in one
provide the tota! :urrent through the device which is written time step, there is an initial displacement current -hose
as magnitude is determined entirely by the computational time

Jlrl I em-i, r + nt.V,. + C .dL(7 step. Thereafter, all displacement currents are zero and all
di transients are particle current transients (it is noted that

An exiernal circuit is not included in these calculations. with a load line, displacemient currents Aould ex.1 The
The first set of results is shown in Fig. 2. Figure 2(a) dis- situation with the nonuniform field calculation and displace-

pla~s the total cur-rent flowing! through the device following ment current contributioni is different Figure 21b diwlays G
apzjiiori ni1f.± - - t'c pulse (itri1ieiitide 1.0) V.' Ilie calcti- tile total current throij--:tie% ice [I! Is repe i zF!.: 21 11
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FIG. 2. (a) Total current vs time following application of a bias of 1.0 V to the 0C

N:Nstructure ith Ll = 0.416,u. (b) Total current vs time follow- b -0 ____________________

ing application of £ bias of 1.0 V to the N'N-N * structure with .* 00 02 04 06 06 0.0

0.4 16 pu (-). Particle current at position 0. 20 0z(-O-). Paruicle current at MNC/101

position 0. 500p (- A-). J,= 1.6x 10" A/cm2 .

FIG. 3. (a) Electric field and (t r-oential '.s distance p'rc 4ks at differcrnt
instants in time. Calculation ii fo the N - N- N- s:.ze- ith L,.

and the particle cur-rent at two different locations within the 0 .416p. e' = 1.0 V.

sr ructure-4-.200 and 0.500y~. The magnitudes of tie pa rticle
current inidicate that the initial transient is strongly in-
fluenced by disiacement current contributions and that it
uvuld be inappropri ate to assume that the initial current tran -
sient is a measure of velocity overshoot. rather the impulsive char.:: in the applied poential over a

The details of the transient, specifically as it relates to single, small but finite timz! step. Physically accurate C3IcUl-

displacement current contributions, are reflected in the time lions follow the initial tir-t step and are discu-'sed below.
dependence of the electric field and potential profiles (Fig. 3) Prior to the application of the step potential a retardinec
and the spatially dependent charge density profiles (Fig. 4). field is formed at the upstream N N - interface limiting

Iti is noted. how ever, that as ir, the uniform field calculations, further injection of space charge into the N - region. This

immediately following the voltage step the electric field in- retarding field, which at rs maxinmum is posizi~e in sign. is

creases evcrywhcre by the ratio of the applied bias to the significantly reduced fol l Ing appliCt on of thstep poteni-

length of the structure, in this case 10 kV/cm. This initial tial. carrier injection into the N -- region is thereby resumed

increase introduces a displacement current whose magni- Two events accompany th: enhi~inctrd inject io.- Fz'-..toac-
&x-r!it,7 rcprcx nz IIhc phiC~l tr;IttIcnr~l. hkut ColltItIII i!A'. t~ h ct~.~ : : I!i::-
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SI.t~ ,:tates that the electric field within the region velocity can exceed the equilibrium values. Fo, the structure
*-~Nl'v'mcincreasingly negative. Second, the space considered herein with L.,= 0.41 6 /1, most of the current

,:. g iiil(\ t wn 15 self-limiting in that as the process of injec. is transported by the gamma v.alley carriers. For this case,

1,etjs the retarding field begins to reform and posi- the mean carrier velocity thtreby exceeds the steady state
J iddt %IICS result at the upstream N N -interface. The value. This is seen in Fig.' 5. vhich also includes a plot of the

t''x .lin nreascd and positive retarding field accompa- gamma valley temperature. The steady state distribution is

. l' tiY tocreisingly negative field within the N -region qualitatively similar to that reported ina number of different
3,teg'sril f h ie oeta last h ptal studies."3 In particular, the presenceofa local cooling at the

pideispliccrment currents inferred from Fig. 2(b). It N'N -interface is noted."'

1,11CO thu1 in a sieady state a significant amount of injected There are several noteworthy featu res asisociated with Fig.
-hmiic r(-~c -t th dontea interface and re- 5. First, there is the progressive movement of the velocity

ou.iniw pre .ence of a downstream retarding field, layer toward the downstream N - N *interface. This migra-
hi.u. the displacement current contributions, tion is associated with the spatial and temporal denr.vatives

!,4 ernime thie extenit it) \~hicli tile carrier on thle left -hiand sid (if Eq S.'Icod. there a, proere-'-i'.e
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decrease in the velocity in the N 'regions as dictated by the excess charge injected into the N- region. This point was
decreasing field within these regions. Indeed, the possibility also made in Ref. 3 where the dependence of current and
exists for the carriers to sustain a transient separation at the voltage on N- region length was also examined. A second
N'N- interface, with carriers on the upstream portion of point of importance concerns determining which portion of
the interface moving toward the cathode and carriers at the the structure dominates its transport It may be intuitively
downstream portion of the interface moving toward the expected that for the structure considered it is the N - region
downstream boundary. This separation is accompanied by that dominates. This appears to be the case for the above
compensating displacement current contributions. discussion. But one may expect that for a sufficiently small

The results clearly indicate the presence of velocity over- N -region, no single region dominates. In the calculations
shoot under nonuniform field conditions. Under uniform reported here, the absence of a single dominating region be-
field conditions, the transient following the peak velocity is comes apparent at higher voltage levels and for the case
dominated by electron transfer. The question of interest thus when L,. = 0. 1 16y. Here, variations in the total charge den-
becomes "Does similar phenomena occur when nonuniform sity tend to screen variations in the doping profile of the
fields are present?" structure, and the potential drop across the N- region is

Figure 6 is a plot of the time evolution of the total carrier small enough to allow a substantial drop across the down-
density and the gamma valley carr-ier density at two points stream N 'regions. Electron transfer occurs away from the
within the N-N-N structure. It is seen that v. the up- N- region. This, of course. isnot unexpected.lItisimplicit in
stream portion of the structure very little transfer occurs. the design of Gunn oscillators with doping 'ariations as-
Mlost of the transfer is at the downstream portion of the signed the task of domain nucleation sites. The current-vol-
structure. One necessatry conclusion of this study is that the cage characteristics are, thierefore, expected to eiject a corn-
uniform field calculations bear little resemblance to the tran- plex set of electrical phenomtrna. These are d&s-layed in Fir.
sients occurring in the N -.N - A. srructure. 7.

The situation as deszribed above depicts the transient so- Figure 7 displays a se,,ies o: current verus %,1hage cur%,-
lution in detail for the N-NN- structure of Fig. I. Of for N-N-N' structu:! vith the indica-_:,ec N- recron
additional interest are- transients for structures with smaller length. Each curve disp;i:. /_ .1;v di, .. is the corn
N - reeton and for uniiformily doped materials with metal putedvalue ofcurrent2at &... 025 V.J~i:.. :-ated in tht
contacts or heterostructures 2buttine (lie active region. The figure caption. As discu-,e-_ ib-owe it is ro:.: that J,~, ir-
former to studies ha%,-beer.completed and will be reported creases as thie N reeior. 14.>:cases i,- lenc:.-. -ki low bia'

at a later tinie Of equal significance and discussed next are leveis. (lhe current-voltcaa, rdaition ajj,.ea.'N :efl owa ao
the dc current -voltage relation% and their dependence on the er relation that is slichti\ le, thtan i/I. = -. d 'AW7

leneth of the N - region . I .S At hid~ier valut,-! ;a there is con~ : bl sublir-
It is expec:ted that the shorter the active region the higher earicv In thie Cu, renc--ol:_!- relation due in to elctrc1::

thtf de driv current " Most discussions associated with this transf .er to thie smtli .Iil:. ectron tra7-.,: Is also oc:*
,reased 1 v-e cuirr-ri are bas;ed on the fact that electron curnne %4m ithiile N rec'. )I tiede~icc 17 the cur' es
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.. ..- ... 10"/cm' over a dista of 0.271 p. The initial unsient

contained signican displacement current contriutions
and provides further evidence for its impotance In another
case. the structure ofthe N - region was altered by incorpor-

L O4po.*, **., ating a local region ofhigher donordensit with e N -
region. The donor density was increased to 10 /an' over a

__ distance oO.03 p and resulted in a current increase of 15%
over the unaltered region calculation. A reduction in donor

. *,... +,. =density over the same region to a value of 10"/ca ' offered
no current changes of any significance for the range of bias
level studied. The result will be reported in detail at a later
time.

.. IV. CONCLUSIONS.0

To summarize, a broad range of numerical calculations
have been performed for the N * N- N structure which sus-

FIG. 7. 6 e xady tec Ant olta1e0 N V. N° Ureao(indscatcd tains a highly nonuniform distribution of charge and poten-
length. 1, = t.6X I0' A/cm'. it, -- 1.0 V. tial. Both transient and steady state calculations have been

performed and discussed. There are two significant observa-
As indicated above. a considerable mount of dectron tions of this study: (i) displacement currents dominate the

transfer occurs in the downstream portion of the N + region initial transients; and (ii) the current voltage characteristics
when the N - region is decreased in length. Indeed, the de- reflect both space charge injection and electron transfer.
tailed calculations indicate that the relative amount of elec- Electron transfer may dominate for both long and very short
tron transfer increases as the N - region decreases in length. N- regions.
At first glance, this result appears to contradict all that has
been discussed about transport in submicron devices. But it
is not unusual when it is realized that as the N- region de- ACKNOWLEDGMENTS
creases in length a greater fraction of the voltage drop falls This work was supported by the Office of Naval Research
across the N regions of the device. It is this latter feature and DARPA, to whom the authors are grateful.
that is responsible for the enhanced transfer. To place this in
different terms, the active region length of the device in-
creases as the N - region becomes insignificantly small.

One question of immediate interest is, therefore, how does 'H. L Grubin and J. P. Kreskovsky. Surf. Si. 132. S94 (19t3.
one retain submicron features while decreasing the length of IR. Fauquemberque. M. Pemisek. and E. Constarn Proceedings of the
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1. INTRODUCTION

C It is now generally accepted that electrical instabilities in bulk Il1-V
semiconductors are controlled by the deails of the boundarv as well as
de.iads of the interior regions. Byv boundary we mean the metal-
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semiconductor interface, the n+-n - interface, the semiconductor.-vacuum'
interface, etc. The situation with submicrometer devices is such that, by
virtue of the thin interior region, the interface is expected to exercise princi. i
pie control over transport within the semiconductorand devices constructed:
thereof.

Transport within any device, particularly with regard to boundaries is
three dimensional. The distribution function within the device mirrors scat..
tering events at the boundaries, particle confinement, and a host of detailed'
surface properties. Difficulties arise simply in describing the role of the!
boundary theoretically and identifying its influence experimentally. In this
volume, there are several chapters dealing with the role of the boundary for
transport parallel to the interface. Here, however, the discussion will be
confined to transport normal to the interface. Particular emphasis will rest
with identifying the role of the boundary in controlling transport in near-
and submicrometer-length devices.

In examining the role of the boundary, cognizance is taken of the chapter
by Hess et al. [ I J on the dependence of transport on the energy and velocity
distribution of electrons entering a uniform field region. In the discussion
below, however, emphasis is on spatially dependent transport in which both
the space charge and the field distribution within the device are nonuniform..'
The reason for including nonuniformities in the discussion is that they are
consequences of the presence of contacts and/or the existence of nonuni-
formities in the doping profile. The significance of including them in the
study lies in the fact that transient effects in the presence of spatial inhomo-
genieties are both qualitatively and quantitatively different from those cal-
culated under uniform field conditions. Several examples illustrate these
differences. First, under uniform field conditions, long-time steady state
velocities show the presence of a dc negative differential conductivity in
gallium arsenide arising from electron transfer. Under nonuniform field
conditions where current rather than velocity is the relevant quantity, calcu-
lations for devices with injecting, partially blocking contacts and highly
nonuniform n'-n- - n+ structures show highly nonlinear current- voltage
(I- ') relationships. These I- V characterizations do not, however, display
negative differential conductivity.* Another point of importance involves
the character of the transient. For uniform fields the signature of velocity
overshoot lies in an initial high peak velocity followed by electron transfer
and a rapid settling toward steady state. Under nonuniform field conditions,
the initial transient is dependent upon the structure of the device. For n+-

' The absence of dc negative differential conductivity (NDC) from the calculations reported
lacerdoes not imply the universal absence of dc NDC from transferred electron semiconductors.
It is possible to envision the mathematical possibility of a boundary with a region of NDC.%,hich when coupled to a transferred electron semiconductor, will )ield dc NDC.
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n- -n+ regions, the initial transient sustains major position-dependent dis-
placement current contributions. These displacement current contributions
arise from the internal rearrangement of electric fields and have the effect of
increasing the lapsed time before the field reaches its steady state value. This
results in a decreased velocity overshoot transient but not a decreased spatial
overshoot, as discussed below.

In another matter, it must be recognized that the role of metal boundaries
and/or properly designed heterostructure interfaces is significantly different
than the role of the n+-n or n-n + interface on device operation. The key
element here, even for transport normal to the interface, may be carrier
confinement. A 0.25-pm structure with carriers confined to this region will
behave differently than a 1-pm-long n+-n--n + element in which the n-
region is only 0.25 pm in length. Forthe n+-n--n + structure at sufficiently
high fields enough of the potential can fall across the downstream n+ region
to cause it to maintain high current densities and electron transfer.

A key element in the study ofthese electron devices lies in the description
of the interface and how it is modeled. Here, it may be argued that there are
several philosophical approaches that we may take. In one-dimensional
descriptions, the metal- semiconductor interface may be treated as a mathe-
matical boundary, with the variables chosen to represent the boundary dic-
tated by the form of differential equations chosen to describe transport
within the semiconductor. For example, in the drift and diffusion formula-
tion of transport, the equation for total current is often expressed in terms of
a second-order partial differential equation in field. Thus, the boundary
condition involves specifying the field at the cathode and anode. In one study
12] the electric field was specified as a time-independent value and the result-
ing dc current voltage characteristic and time-dependent behavior, when it
occurred, was shown to be a sensitive function of the chosen boundary value.
More general discussions have included a time-dependent cathode field [3].-

Another point of view may tend to ignore the mathematical boundary as
an appropriate representation of the interface effect. Instead, at a position far
removed from the boundary, an effective field may be introduced to account
for the consequences ofe.g., a dipole layer, or indeed thedipole layer may be
introduced (4]. The region must then be coupled to a set of time-dependent
rate equations that account for either thermionic emission or field-assisted
tunneling through the generated barrier (5].

Independent of the point of view taken to model the effect of the interface
in the presence of an applied field, the carriers will enter the semiconductor
%kith a well-defined distribution of energies that are likely to be significantly
different from those far from the interface. A case in point is gallium arsenide
where the following question may be asked. When the distribution of car-
riers, velocity, and energy in the r, L, and X valleys are known at the up and

0
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downstream interface, then through solution to the governing interior equa-
tions, it may be expected that the current -voltage relation and transient
behavior of the structure in principle is predictable; given this, cah the
obverse side be seen? Namely, can we extract from a given set of electrical
measurements on near- and submicrometer structures a family of interfacial
characteristics within which material variations lead to predictive device
behavior. This approach is clearly iterative and has been attempted. It may
also be necessary if we have any hopes of engineering structures for high-
speed applications. Indeed, there are already indications that this approach
may be successful. The evidence lies in the success of the boundary field
models to explain, on one level, the broad range of electrical behavior of
gallium arsenide and indium phosphide [61 and the apparent relationship of
these boundary field models to the energy, momentum, and canierdistribu-
tion of entering electrons.

The preceding discussion expresses the construction and viewpoint of this
chapter. Namely, device boundaries and interfaces dictate that transport
must reflect their presence. The purpose of this chapter is to illustrate this.
The discussion is separated into two distinct parts, with the first part dealing
with the equations governing near- and submicrometer transport. The de-
scription of transport is through moments of the Boltzmann transport equa-
tion. The second part of the discussion deals with boundary- and length-de-
pendent transport. Initially, several uniform field transient calculations are
included to introduce the language of transient transport and to form a basis
for comparison with the nonuniform field results.

The nonuniform field results are discussed in Section 111. Here, two dis-
tinct classes of devices are considered. The first consists ofa uniformly doped
structure in which all space charge nonuniformities arise from variations in
the upstream boundary (cathode) conditions. The second device structure is
the n+-n--n + structure in which nonuniformities in the space charge arise
primarily from the n+-n - and n--n + interfaces. Transient calculations
with both structures show distinct local displacement current contributions,
which will camouflage, in many cases, the presence of transient overshoot.

A brief summary of the basic findings of the study is contained in
Section IV.

II. TRANSPORT THROUGH MOMENT OF THE BOLTZMANN
TRANSPORT EQUATION

Spatial and temporal transients are determined through solution to a set of
coupled equations. These include Poisson's equation

Vd, = +(elEXn - no), (I)
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where no is a prespecified background concentration and n denotes the free
carrier contribution arising from various portions of the conduction band.
For the discussion below, only two sections of the conduction band are
considered, r and L. Thus,

n -= n, + n2, (2)

where n, designates the population of the r valley and n2 the population of
the L valley.

Poisson's equation is coupled to the first three moments of the Boltzmann
transport equation, the first set ofwhich involves continuity. For the r valley

On, 0 n,hkJ, n,r, + (n - n,)r 2 , (3)
at axi mI

where r, denotes the rate at which carriers are scattered from the r valley to
all sections of the L valley and 12 denotes return scattering. It is noted that for
parabolic bands, we assume

011 = m, Vj,. (4)

An equation similar to Eq. (3) describes transient population changes in the
L valley. When the two are combined, a global continuity equation results,

On a /kj' 1 nIn,- +(- n,) . (5)

The quantity

n,(hkJ/m,) + (n - nXhk/m 2) - Ci (6)

is the velocity flux density ofthe system. It is convenient to relate this term to
a mean spatialy dependent drift velocity

Vi: =COn. (7)

It is noted that the total current density,

ii = -eCi + e (oFat), (8)

is conserved; i.e.,
oJj/ax, = 0. (9)

The second pair of moment equations is that of momentum balance. For the -v
r-valley carrier

a hk; n,hk' + en, a - nhk{F1. (10)

n9a (3x, m, O x,

Here, F3 represents the net rate of momentum scattering and V/,' represents

1 1 1 g I '
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the components of the pressure tensor
l 'f(k -- k),(k -k,)jfdk. (11)

For the situation in which frepresents a displaced Maxwcllian

y4 = n~k.T,6o. (12)

where T, is the electron temperature of the r-valley carriers. For the situa-
tion in which there are nonspherical contributions tof additional diagonal
as well as off-diagonal components of the pressure tensor arise. For the
following calculations, the distribution function has been generalized from
the displaced Maxwellian

fo = A expf- h(k - k,)2/2m, kT,] (13)

into the form (see, for example, Sommerfield 17, Section 43])

f= (I + a + a '

ak,+a a k +)fo. (14)

subject to the conditions

fdk - 3 fodk, (15)h, I h2f
4L3 ff(k - k,)2 dk = --- fo(k - k,2 dk. (16)

The nonspherical nature of the distribution function suggests the separation

Y/Ij Vl, +141(17)

where V/, is given by Eq. (12) and @J represents the additional contribution. 41
The nonspherical contributions are not calculated from first principles. In-
stead, the treatments of fluid dynamics are followed with

_a-p _ 2 (18),'= -, La, + ax, &4.x

where it is noted that 0

3
0 . (19)

i-I

In one dimension (along x)

4 av (20)

V ' V. ' (20)"9

3,,=-U ax
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in two dimensions, the derivative of the stress tensor is

r ,~2 V., !tV' a2 Vx yaV

3L O x axy 3 ax cyj

2 Y+ 02 V + a2VJV 2o2Vy] (21)

In the discussion below, an even simpler version of Eq. (2 1) is assumed:

0-2 Vi

1 i= -A 1j- (22)

T~i I

with the constraint Eq. (15) only approximately satisfied. Thus, the relevant
equation for momentum balance is0

49nhkl - nhk i,+ n - -~j

o C, _ ]X 2 + M x axy axay

+j A, h +kj - n3hk-r 3. (23)
in, O?

axy

n t (n - n)ekw 2 e (n - n)hk + e(n - . )ssm

a .h o@v
a,, (n -# --. ,lT +(22)M &

Teutirdn fina momentum balance eai on is thtascae iheeg

S .a hk Ilk a eni j a QTi k  , nOx, m e a

'a a i M1 , X n ahiF"23

JO

-( -n,)Ok -x m2. 'k x
Ox 2 hox

- (n - n,)hkUr 4. (24)
The third and final pair of balance equations is that associated with energy
transport. Straightforward application of the moment equations yields

O O/hk i+ n hk o'b ahk .. 0.

- nUi1 "5 + (n - n1)U2 r6 , (25)

where

U1, = JkBT,, (26)

I' 2 = n, + Ui (27)

and

= = 813M2 (k - k,)(k - k,)2f dk, (28)

U S w - , -
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where the summation convention over i is assumed. For spherically sym-
metric distribution functions, Q is zero. For nonspherical situations it rep-
resents a flow of heat and is treated phenomenologically through analogy to
Fourier's law

I Q' - -K, _x T,. (29)
C1j

It is important to note at this point that the use of the relationships given by
Eqs. (18) and (29) are not fundamental. Rather, they are expressions of
ignorance of the detailed role of the distribution on transport, particularly
near the boundaries.

In the analysis that follows, Eq. (25) is not solved. Rather, it is combined
with Eqs. (3) and (24) to yield

n a hk 2 a hk+
n1  x - nU, - -nUAx , + -,0  T,

+ - [2nr 3 - n,r, + (n - n,)F2] - nU, 1 5

2m,

+ (n - n,)U 2r6 . (30)

In Eq. (30), the nonspherical contributions of the stress tensor, (Eq. (10)]
are ignored. For the second species of carriers

a -(n - n)) U 2  ax - U -- (n - n,)U 2 0  m

a2  
h2k.

+ K 2 ~-T 2 + .2--2(n - n)r + nr- (n - nr 21
jx~ 2

-(n - n,)U2r 7 + nUF8 . (31) ,0

Equations (1), (3), (5), (23), (24), (30), and (3 1) are the equations governing
transport in the systems considered in this chapter. The equations are more
general than others in that nonspherical contributions to the Boltzmann
transport equation (BTE) moments have been included. The scattering inte-
grals F, - F18 and the form they take have been discussed in the past where 0
these evaluations have been in terms of the displaced Maxwellian only.
These integrals have not been generalized to include nonspherical contribu-
tions.

The governing equations are expressed in dimensionless form prior to
transformation into difference equations. The dimensionless equations are
discussed in the appendix to this chapter. Solution of the governing -quation
requires imposition of boundary conditions. These represent a crucial aspect
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of the study and are discussed as they are needed. The band structure param.
eters used in the study for two-level transfer are also discussed in the
appendix.

III. SOLUTION OF THE GOVERNING EQUATIONS
a

A. Uniform Fields

Calculations for uniform fields are discussed first, as they offer an impor-
tant starting point for examining transients under nonuniform field condi-
tions. Uniform fields result from assuming a donor level no that is spatially
constant to the boundary and specifying that 0

n = n, = V, = V= T1.= T.= 0 (32)

1.0

0.8

0.6

JT /J0

0.4

2o2

0.0 I

0 2 4 6 8 10

T/T o

Fig. I. Magnitude of the current transient [Eq. (8)] following application of a sudden change
in bias. Parameters for this calculation are listed in Table A- I. The results of this calculation are
qualitatively similar to those obtained in many studies, the first for GaAs being Ruch (8]. The
term in us oreach calculation reflects the physical time required for steady state. The longest time
duration is that associated with the lowest bias level. For this calculation 2.0 V corresponds to
an average field of 20 kV/cm. 1.0 V yields 10 kV/cm. etc. J0 - 8 X 10' A/cml; To - I psec.
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at both the cathode and anode boundaries. The subscript x in Eq. (32)
denotes a first derivative. Figure I displays the velocity transient for a 1-pm.
long element with a doping level of 5.0 X 1015/cm 3. The parameters in-
volved are listed in Table A-I. The length specification is artificial. For each
calculation, the bias was raised in one time step from 0.01 V to the value
indicated in the figure. We note the high carrier velocity occurring at approx-
imately 0.5 psec and the long-term asymptotic lower steady-state value. Also
apparent in the figure is the presence of a region of negative differential
mobility. Figure 2 displays the time rate of change of carriers in the gamma
valley. Electron transfer is apparent at times following the peak velocity.
Figure 3 displays the time dependence of the electron temperature following
application of the voltage pulse. The feature to be noted from this figure and
Eq. (30) is that for uniform fields any time dependence in T, is due entirely to
scattering events and is thus a measure of when ballistic transport may be
ignored. Another point of interest is that under uniform field conditions the
population of carriers in either the central or satellite valley is governed by
the scattering rates which are in turn governed by the value of the carrier
temperature. This will be featured prominently later when contact effects are
considered. The time dependence of the r-valley velocity is displayed in Fig.
4. (The long-time asymptotic values do not and should not display negative
differential mobility. The mean steady state distribution of velocities as well

TABLE I
GaAs Parameters Used in Calculations

Parameter r L Common

Number of equivalent valleys I 4
Effective mass (m) 0.067 0.222
r- L separation (eV) 0.33
Polar optical scattering

Static dielectric constant 12.90
High-frequency dielectric constant 10.92
LO phonon (eV) 0.0354

r- L scattering
Coupling constant (eV/cm) 0.Soo X 109
Phonon energy (eV) 0.0278

L- L scattering
Coupling constant (eV/cm) 2.0 X 109
Phonon energy (eV) 0.0354

Acoustic scattering
Deformation potential (eV) 7.0 9.2

Nonpolar scattering (L)
Coupling constant (eV/cm) 0.300 X 10'
Phonon energy (eV) 0.0343

0

ru .ur .
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Fig. 2. Distribution of 1-valley carriers as a function of time for the parameters of Fig. 1.
Note the delay in electron transfer, which is shortest for the highest bias level. N0 = 5 X 103'/
cm3; To = I psec.
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Fig. 3. Transient distribution of temperature following application of a sudden change in
bias for the parameters of Fig. I. The presence of a temperature overshoot is noted, a feature
resulting from the enhanced scattering at elevated temperatures. The inset displays the tempera-
ture during the first 0.4 psec and demonstrates through application of Eq. (30) the onset of
scattering. To - I psec.
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0.2 4

0 2 4 6 6 I0

TIT0
Fig. 4. Transient r-valley velocity distribution for the parameters of Fg I. The initial

velocity peak corresponds closely in value to the peak current transient prior to electron
transfer. The decreased velocity represents enhanced scattering at elevated temperatures. Vo -
108 cm/sec; T. - I psec.

as that within the r valley is shown in Fig. 5. It is noted that nonparabolic
effects are not included here.)

B. Nonuniform Fields and Uniform Doping

The origin of nonuniform fields and space charge layers in uniformly
doped structures lies in the conditions imposed at the upstream and down-
stream boundaries. Under conditions in which current is flowing through
the structure, the upstream boundary conditions manifest themselves as
cathode boundary current-field relationships. It is the influence of the cath-
ode boundary. that will dominate the following discussion. To develop the
concept of boundary controlled transport several qualitative features of the
mathematics governing transport are considered.

Under time-independent steady state conditions, the velocity flux density
C= n,(x) V,(x) + [n(x) - n,(x)]JV2(x) - n(x)V(x) (33)

11111111 il
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Fig. S. Steady state field dependent velocity for electrons in the r-valley of gallium arsenide

for the parameters of Table 1. Also, steady state mean field dependent electron velocity V.. (See
Eq. (6).

is a constant independent of position. Denoting, through the subscript c the
carrier density and the mean velocity at the first computed point within the
semiconductor, the follo'wing exercise is performed:

C- nV. = (n, - nv (34)

where no is the uniform background doping level. For the purpose ofspecific-
ity V, is assigned to be a monotonically increasing function of field and to
have the form represented by the curve n V, in Fig. 6. Note that for uniform
field conditions, Vc would necessarily be the same as the bulk field depen-
dent velocity and exhibit negative differential mobility. Also included in Fig.,"
6 is a sketch of one possible variation ofn, Vc. The field dependence of n, is
thereby defined implicitly in Fig. 6. It is also noted that nVc and nV, are
chosen to intersect, although there is no reason a priori to assume any
universality to this property. Figure 6 also includes a schematic of the veloc-
ity flux density, noV*, (assuming negative differential mobility) associated
with uniform fields and two horizontal lines representing two different
values of the current flux density within the device.

0
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-J

C2 Cz

CC

/ 0

A c~ 2  No

-'C =Ca.

DISTANCE

Fig. 6. (a) Schematic representation of a current - field relationship within the interior of the
semiconductor no V. and a possible current - field relation at the first computed point following
the boundary of the semiconductor n0V,. (C1 and C2 represent constant current levels in the
device.) The cathode field for the low current level case is denoted by F,1 The neutral interior
field is represented by F,1l. Similar remarks apply to the higher current level. (it is important to
note that studies using the drift and diffusion equations indicate that for 4', - 0Oat the boundary,
the transition from cathode depletion to cathode accumulation requires all three characteristics,
not', nV.. and ,tnV. to intersect at the same point 191. (b) Schematic of possible cathode
adjacent depletion and accumulation. followed by broad depletion, for the two bias current
levels of Fig. 6a.

JillI



-s

252 H. L. Gnbin and J. P. Kreskovsky

Figure 6a takes on significance when the intersection of the line of con-
stant current Cand the neutral field characteristic no V. is taken to represent
uniform field region values within the interior ofthe semiconductor, and the
intersection of C with the cathode characteristic ncVc is taken to represent
field values at the boundary of the semiconductor (9].

Consider first the low-current case C1. Here, the assumed current field
relationships are such that for

F, > Fb,, (35)

(o)

n C .

M 
noV,

z- Fb2

D C

FIELD

(b)

C . NO

S"'-C =C1

z

DISTANCE "

Fig. 7. (a) Current-field relationship in Fig. 6a but for a different set of n 1'. and n.V,'
curves. (b) Schematic of possible cathode adjacent depletion and accumulation followed by
broad accumulation for the two bias levels of Fig. 7a.
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no > n. For a specific distance between the upstream boundary and the
interior of the structure, a range of charge depletion forms, as sketched
in Fig. 6b.

Consider next the higher-current case C2 . For this situation

no V,(F) < n.V(F) (36)

and a region of local charge accumulation forms at the upstream boundary.
Because the field dependence of the mean carrier velocity exhibits a region of
negative differential mobility, the downstream interior field is either greater
than or less than the cathode field and either a range of charge accumulation
forms within the interior ofthe structure or a range ofcharge depletion forms
within the interior. The latter is illustrated in Fig. 6b. It is important to note
that nothing has been said about the stability of these profiles. Indeed, in 0
some cases the profiles are electrically unstable [61:

Consider Fig. 7a with a different set of upstream boundary characteristics.
For the low-current case

F. < FbI, (37)

and a region of charge accumulation layer forms over a specific distance 0
between the upstream boundary and the interior of the structure. However,
at the upstream boundary

no Vg(F. > nc V,(Fc), (38)

indicating that a region of local charge depletion forms at the upstream e
boundary. A sketch of a possible space charge profile is shown in Fig. 7b. For
the high-current case, both within the interior and at the upstream boundary
regions of charge accumulation form. A sketch of this charge layer is also
shown in Fig. 7b.

The preceding discussion indicates that the interplay between the bound-
ary and the interior of the semiconductor is able to introduce a rich variation 0
in the space charge distribution. A situation evoking considerable interest
with respect to this interplay is one that may be regarded as a singular
solution. This occurs when the current flux density C2 intersects the neutral
characteristic at two points and the curves nV,, nV,, and NOV. intersect at
the same field value (thus, Vo = Vc and no = nc). The general description and
consequences of the approach to this event in long samples, as a precursor for
nucleation of high electric field traveling dipole layers has been broadly
delineated in a variety of publications [6,9]. The consequence ofthis in terms
of solutions to the BTE moments is discussed in Subsection il.E.

It should be apparent from the preceding discussion that the detailed
description of the influence of the boundary requires a description of the
field dependence of the mean entrance velocity and carrier distributions. In
the following calculations in which transport is described through solutions j

0
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to moments of the BTE, these field dependencies are constrained by the
boundary conditions to the governing equation and are expressed as solu-
tions of

C - n.V(F.) - F. - g(C). (39)

When F, is a double-valued function of C a regional approach is taken.

C. The Effect of Device Length

Up to this point, nothing has been discussed concerning the influence of
device length on the cathode characteristic properties, nor on the transport
properties through the structure. There are, however, several points of note.
First, in the calculations, the field at the cathode is not specified but is
computed self-consistently from the governing equation subject to the con-
straints of the boundary conditions. For constant no the details of transport
from the cathode are dominated by the uniform field neutral velocity char-
acteristic. For uniform fields and long devices, the velocity exhibits negative
differential mobility as displayed in Fig. 5. However, as the device decreases
in length, the mean carrier velocity for uniform fields is altered as displayed
in Fig. 8. (See Grubin et al. [101 for a discussion of how the calculation was

8
L :0.12 I m

E

0

_J L=C

0.4-
0 10 20 30

FIELO (kV/cm)

Fig. 8. Velocity versus distance for the uniform field velocity transient. For these calcula- I
tions, as in Figs. 1 -4, velocity transient is in response to a sudden change in electric field. Initial
velocity is zero and L - Jo Ili) di. (From Grubin et at 1101,)

_"
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performed along with the imposed condition.) Perhaps the most significant
phenomena occurring as the semiconductor length is reduced are the pro-
gressive decrease in negative differential mobility of GaAs and the increase
in the velocity and, hence, current. These effects are illustrated below.

D. Steady State and Transient Behavior Injecting Cathode
(L = 1.0Mm)

The preceding discussion is independent of the detailed description pro-
vided by the governing equations chosen to represent device transport. The
governing equations and their associated boundary conditions provide a
mechanism by which a set of contact descriptors can be extracted. For
example, it is expected that the specific properties of the physical contact or
boundary will influence the distribution of carriers within the valence and
conduction bands of the semiconductor in the vicinity of the boundary.
(One of the earlier studies involving the role of the boundaries on transient
transport through solutions of the Boltzmann transport equation was that of

0.6

0.5
Novr

0.4 -

Jc

J/J 0 0.3

0.2 "i

No0Vn

0I

0 10 20 30

FIELD (kv/Cm)

Fig. 9. Data of Fig. 5 plus the cathode current field relation for the accumulation layer
boundary. J0 - 8 X 10' A/cm2 .
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Gray et al. I I I].) Furthermore, under conditions of finite bias in which
current is transported through the device, the influence of the contact is
expected to affect the entrance velocities (2]. In the discussion that follows, a •
very simple set of boundary conditions is imposed to represent the effects of
the physical boundary. The importance of these boundary conditions is to
create nonuniform fields. As will be seen, the boundary conditions chosen
are not the result ofan exhaustive study. Rather, they are associated with an
initial effort. For example, in the following discussion, the initial sharing of
carriers between the r and L portions of the conduction band is controlled

6-

5-

-F

1O kV/cm 4

0

0.2 0.4 0.6 0.8 1,0

DISTANCE / I.Olrm

Fig. 10. Steady state distribution of field within a I-pm-long GaAs element at three bias
values; T- 300 K. (See appendix for boundary conditions.) Electron transfer occurs down-
stream from the cathode resulting in a downstream accumulation of carriers.
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Fig. Ii. Distribution of total and F-valley carrier density for the parameters of Fig. 10.
Electron transferbegins within 0.2/um downstream from the cathode. By comparing Figs. 2 and
II, it is noted that electron transfer at 6, 10, and 20 kV/cm significantly lags the uniform field
value.
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by specifying a value for the electron temperature at the cathode boundary.
In addition, a representation of the entrance velocity is through a cathode
contact mobility. This is identified in the calculation beginning with Fg 9.

Figures 9-12 are calculations performed for a gallium arsenide structure
with the same material parameters as that of the uniform field calculations.
Here, however, the boundary conditions are different. At the cathode

T, - 300K. Tu 0,

and at the anode

n.- n, -1. V. - T,,..- T2= - 0, (41)

where the double xsubscript denotes a second derivative. The consequences
of this set of boundary conditions is that the r-valley electrons enter the
structure with a velocity in excess of the steady state uniform field value.

1.0

0.8
2.0 v

0.6-10

V r

0.24

0 0.2 0.4 0.6 0.8 .

DISTANCE/I.0lm
Fig. 12. Distribution of r-valley velocity for the parameters of Fig. 10. At a bias of 2 V and a

field of 20 ky/cm the r valley velocity is slightly in excssuf the uniform field calculation. At a
bias of I V and a field of 10 kV/cm, the differenc between the nonuniform and uniform field
velocity is even greater. This excess is a consequence of a lower value of elecron temperature at
thewe given field values.
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Specification of the ['-valley temperature at 300K ensures that the relative
cathode carrier contribution of the L valley is negligible. Furthermore, the
fact that the mean velocity ofthe L-valley carriers is significantly below that
of the r-valley carriers provides the demonstration that the cathode current
field relation is dominated by the r valley carriers

J.- -e(nV,. + (n - n,)V 2J , ne&F. (42)

While Eq. (42) is significant in providing a description of the dominating
carrier at the cathode, alone it will not determine whether the cathode is
carrier depleted, neutral, or accumulated. The moment equations coupled
to Poisson's equation must be solved. Qualitative information, however, can
be obtained for the specific set of boundary conditions given by Eq. (40)
through use of the mobility approximation. Because of the inherent limita-
tions of the mobility approximation the consequences of its use must be 0
regarded as relevant only if insight is provided in the interpretation of the
exact solution.

The qualitative information is obtained through a calculation of the tran-
sit time of a carrier within the vicinity of the cathode. Because the transit
time is necessarily a positive quantity, inequalities arise which express cath- 0
ode depletion, neutrality, and accumulation. The transit time between the
cathode and an interior point X is

t(X) =(43)

Assuming a constant mobility for the r-valley carriers and the significant
approximation

nV n,V,. (44)

then for carriers within the vicinity of the cathode the arguments leading to
Eq. (42) imply that V - -pu, F. This last statement, when coupled to Pois-
son's equation yields

,(x) = TO logu J - n je , I(45)

where

ro = E/noe 1  (46)

is the dielectric relaxation time of the r-valley carriers. Fora cathode bound-
ary condition consistent with J = n, epF

t(x) = TO lo g  I - I n p-,/X . (47)
i() Rlo nccl /Jy

I"
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Since the requirement that the transit time be positive must be met, two

inequalities emerge:

n.& > no#,, X) < F. (48a)

n& < Un,, F(X) > F,. (48b)

For Eq. (48a), local charge accumulation is present at the cathode. Note
that the condition F(X) < F is stronger than necessary and requires that
N > No. In Eq. (48b) cathode depletion occurs with Ne < Nop,/4X. The
results of the following simulation discussion are consistent with Eq. (48a) as
demonstrated in Fig. 9. For Eq. (48b), reference is made to the discussion of
Grubin and Kreskovsky [12]. F gure 9 is a plot of the computed dc current
versus field relationship at the cathode boundary. It is approximately linear
with only a marginal variation in field. The cathode field is effectively
pinned. For reference purposes, the current-field relationship for the uni-
form field structure is also shown.

The characteristics of the uniform field curve and the cathode current-
field relationship are different and for a constant current through the semi-

I0

2 v

/

300 K

4- 0.6 V. "

2 -

oC I I

0 0.2 0.4 0.6 0.8 1.0

OISTANCE/I.0 im
Fig. 13. Temperature distribution within the r valley for the parameters of Fig. 10. See

comments associated with Fig. 12.
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conductor at least two different field values result at intersections. The cath-
ode boundary field is lower than that of the neutral field intersection, a result
that is consistent with cathode accumulation.

The steady state time independent distributions of electric field, carrier
density, ! -valley velocity, and electron temperature are displayed in Figs.
10-13 for various bias levels. While the calculation displays the excess
carrier velocity at elevated bias levels, there is also an enhanced electron
transfer and the dc current shows saturation. The clear consequence of the
transfer is that the current does not scale the velocity. This latter feature is 0
reflected in the current-voltage relationship shown in Fg. 14.

With regard to the current-voltage characteristic, while the current does
not scale the velocity and thus does not fully reflect overshoot contributions,
its high bias level is above that associated with the equilibrium steady state
velocity field relationship, while below that associated with the F-valley
velocity. The excess above V, is due predominantly to the cathode boundary 0
condition that allows for a high level of injected charge. The depression
below Vr is due to electron transfer. It is also noted that there is virtually no
electron transfer near the cathode. Most of it occurs near the anode, and the
effect of electron transfer leads to saturation in the current density. Another
feature of the nonuniform field calculation lies in the clear absence of nega-
tive differential conductivity, a phenomenon present in uniform field calcu- 0
lations.

The significant qualitative differences between the steady state uniform
field characteristics and those associated with nonuniform fields suggest
some differences in the transient characteristics. This is indeed the case as
discussed below.

F (10 kV/cm)

0.4

jjo0.2

0.1

0 I 20

,(V)
Fig. 14. Steady state current density versus applied voltage and average field for the I .0-cm-

long structure with the parameters of Fig. 10. Jo - X t04 A/cm 2.

pO
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Figure 15 displays the current transient following application of a voltage
pulse. The first point we emphasize is that the plot consists of current rather
than velocity. The second point is that the current transient is ostensibly
similar to that associated with velocity overshoot. There is, however, a fun-
damental difference between the two. For uniform and nonuniform fields
during the first time step, the field throughout the structure is increased by an
amount equal to the change in applied voltage divided by device length. This
introduces a one-time-step displacement current whose magnitude is com-
putationally dependent and therefore nonphysical. For uniform fields, all
displacement current contributions cease after the initial time step. For
nonuniform fields all time-dependent field evolution is accurately calculated
following the initial time step. Here, with the cathode boundary introducing
a cathode adjacent accumulation layer, the time dependence introduces a
layer that propagates toward the anode boundary. This propagation is ac-
companied by field rearrangement and internal point-by-point displace-
ment current contributions.

0.6

0.5

0.4

J
Jo

0.31

0.2

0.1 L -1 !

0 216 432 6.48 8.65 1081
TIME (T/T 0 )

Fig. 15. Magnitude of current transient following application of a step change in bias to
1.0 V for a I 0-pum-long device at 300 K with the parameters of Fig. 10. Current peak is similar
to that of Fig. I. Steady state velocity is above that of the uniform field case. It is noted that the
time to steady state is approximately 50% longer than that associated with the steady state
calculation of Fig. 1.Jo- 8 X 10" A/cm2 ; To - I psec.
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Figure 16 shows the space- and time-dependent evolution of the electric
field within the device. The effect ofthe boundary condition is to introduce a
propagating accumulation layer originating at the cathode, while down-
stream from the anode the field is approximately uniform during the first 0.5
psec becoming highly nonuniform as steady state is approached. The early
time transients dictate that displacement current contributions will be signif-
icant within the vicinity of the propagating accumulation layer, as shown in
Fig. 17 and will be insignificant downstream from the layer. In the latter
regions, the familiar velocity transients obtained from uniform field calcula-
tions arise. At later times propagation continues but is accompanied by
electron transfer. The long-time transient differs from that of uniform fields.
(We note from Figs. 18 and 19 the absence, for t < 0.5 psec, of any significant
transfer downstream from the moving space charge layer. Hereto, the carrier
velocity (Fig. 20) downstream from the moving space charge layer sustains
high values common to overshoot).

There are three dominating features of the preceding calculations. The
first two are the boundary conditions on the l'-valley temperature and mean
carrier velocity. The third is the length of the structure. As discussed earlier,
the specification of the r-valley electron temperature provides dominant
control in these calculations ofthe relative population ofthe r-valley carriers a
at the cathode. For the calculations of Figs. 10- 11, specifying T, at 300K
resulted in virtually the entire sea ofcathode carriers as lr-valley carriers. In a
study performed earlier [ 12] in which the device length was 2.0 pm and the
r-valley velocity was subject to a mobility boundary condition as in Eq. (40),
the results were qualitatively similar for T, - 300K and a r-valley boundary
mobility greater than that of the low-field steady state mobility of the r-val-
ley carriers. In those calculations, the total set of boundary conditions was
somewhat different than those employed in the discussion of Figs. 10-20
but there were several definite trends. For example, by retaining a suitably
high cathode mobility and by elevating the electron temperature, space
charge accumulation at the cathode was retained, but the relative proportion
of F7-valley carriers at the cathode decreased. Again, on the obverse side,
retaining a cathode temperature of T, = 300K but reducing the boundary
mobility of the r-valley carriers to a value below that of the low-field mobil-
ity of the r-valley carrier in steady state results in a partial depletion of
carriers at the cathode and a concomitant increase in the cathode field to
values in excess of that within neutral regions interior to the device. Each of
these results is consistent with the qualitative arguments contained in Eqs.
(43)-(48).

The immediate conclusion that can be drawn from the set of referenced
results is that the presence of space charge accumulation or depletion at the
cathode is dominated by the field dependence of the entering carrier velocity

03
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Fig. 16. Distribution of electric field at successive instantsof time following application of a

step change in voltage for the parameters of Fg. 15. During the first time step. the field increase
from its steady state value at a bias of 0.01 V by an amount equal to 9.99 kV/cm ((1-0.01) V/
I pm]. Subsequent time dependence shows a space charge layer propagating toward the anode.
(a) During the first 0.5 psec the field downstream from the propagating accumulation layer is
spatially uniform. Within this region transients are governed by the uniform field velocity
overshoot transients. (b) During the long-time transients, electron transfer occurs and relax-
ation differs from that of the uniform field transient.
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II.7 (a) and (b) Displacement current at 5 instants ofttime for the parameters ofFig. 15.

Initial displacement currents ame strong and accompany the moving accumulation layer. .4
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Fig. 18. (a) and (b) Transient distribution of total charge following application of a step

change in potential for the parameters of Fig. 15. Note that downstream from the propagating
accumulation layer the charge distribution is flat as reflected, additionally in the flat field profile
of Fig. 16a. Space charge accumulation occurs during the longer time interval.
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( Fig. 19. (a) and (b) Transient distribution of 17-valley carrier density for the parameters of
Fig. 15. Note that %ithin the first 0.5 psec, very little transfer occurs.
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Fig. 20. (a) and (b) Transient distibution of the r-aley~ velocity following application ofta
voltage pulse tar the parameters ot Fig. I S. The velocity layer propagates and shows a tendency
to lead the transient changes in the r7-vally carrier density. Downstream, the velocity transient
is relatively unitorm fort < 0.5 psec and tends to tallow the uniformi field transient of Fig. 4.
Differences tram the unitorm field calculations occur during the long-time transient. V0 - 10'
cm/sec.
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vis-a-vis, that within the interior ofthe device. This conclusion is applied to a
problem of high-visibility, transit-time Gunn domain instabilities in GaAs.

E. Steady State and Transient Behavior and Partially Blocking
Cathode (L = 5.00 pm) Gunn Oscillations

The structure under consideration is "long" with respect to submicro-
meter dimension; the device length is 5.00 pm. The boundary conditions
here are different than those used for Figs. 10-20. In this case, those of Eq.
(30) are repeated, with two critical variations:

V, -- 4000F and T, - 1200 K (49)

As in the case of the accumulated cathode, the situation represented by Eq.
(49) can be described qualitatively by Eqs. (43)-(47) with the modification

nV- n,V, a, nV,, (50)

where /3 represents an average of the fraction of r-valley to total carriers

ooO

8.0 V

6.0( .
6.0 2.0Ov

40 ~
v. \.ov 

%

20 il- v0, . .. .. . .. . . . . ...

0 02 04 0.6 08 tO

DISTANCE / 5 Ofm

Fig. 21. Steady state distribution of electric field within the interior of a 5.00-pm-long
uniformly doped GaAs structure at various bias levels. Parameters are given in the appendix. It
is noted that the field at the cathode, in response to the boundary conditions, is qualitatively
different than that associated with Figs. 10- 20. Here, the field decreases from the cathode to the
anode. In the vicinity of the anode the field is uniform. The net decrease in field is consistent
with a cathode region partially depleted ofcarriers. Note that prior to reaching the downstream
portion of the structure, the field displays a minimum followed by a change in slope. This
change in slope represents the presence of a region of local charge accumulation.
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within the cathode region. With this change

o I u, I. - '.s,4 Pn / (5l)

The requirement that the transit time be positive leads to the inequality
flnj4 < nolO,, F(X) > F.. (52)

for a restricted range of field values. Equation (52) is represented in detail
below and shows the presence of cathode depletion.

Figure 21 displays the field distribution, whose most obvious characteris-
tic is that ofa broad depletion region adjacent to the cathode. The character-
istics of this depletion region are that with increasing bias, the depletion zone
broadens, the cathode field increases, and the downstream field begins to
approach a constant value. This latter feature manifests itself as hard satura-
tion in current versus voltage.

Figure 22 is a display of the carrier density in the r valley as well as total
carrier density. It is first noted that for all of the bias values chosen, the
r-valley carrier density displays partial depletion in the vicinity of the cath-
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ode boundary. This, it may be anticipated, will manifest itself as an excess
carrier velocity at the cathode (Fig. 23). It is also noted that as the bias level

increases, the total charge at the cathode shows a diminished depletion, while
downstream there is a weak region of charge accumulation. With regard to
the r7-valley velocity, this follows the pattern dictated by current continuity
and cathode adjacent charge depletion. The carrier velocity at the cathode
sustains values in excess of that within the neutral interior regions of the
semiconductor.

Figure 24 displays the dc current-voltage relationship for this structure.
Several points are noteworthy. The first point is the absence of negative
differential conductivity even though the neutral interior region is character-
ized by a region of negative differential mobility. The second point to note is
that current saturation occurs at values below that associated with the I-pm-
long device.

The cathode current-field relationship is displayed against the neutral
field characteristic in Fig. 25. In addition, the cathode boundary neutral field
characteristic is also shown. The curves display an apparent tendency to
intersect within the region of negative differential mobility, resulting in two
approximately neutral regions sustaining different values of field and veloc-
ity. Under a well-defined set of conditions, this configuration is electrically
unstable and leads to the nucleation and propagation of high-field domains.
For the configuration under consideration, an increase in bias level from 2.0

0,40

032

024 (\. \ "1
Vr \ \. v

10 cm /,,c 1.\oo, \,o v -. ..... .-... ..... ..-- -

\o oo

0 02 04 06 08 1.0

DISTANCE /5 Op."
Fig. 23. Steady state velocity distribution of [ -valley carriers for the parameters of Fig. 2 1.

Note that unlike the velocity distribution for the r.valley electronsofan injecting contact where
the carrier velocity is greatest at the anode, for this length structure the r.vailey velocity is
greatest at the cathode. Note further that the change in cathode velocity with increased bias is
very small at high bias levels and reflects the presence of current saturation.
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Fig. 24. Steady state current voltage characteristics J(46) for the partially depleted cathode
structure with a length Of 5.00 pm. Parameters are those of Fig. 2 1. Of significance here is the
fact that saturation in current occurs at an average field significantly below that of the I .Opm
device and that the current in saturation is approximately I that of the I .0-pm-long device. Also
shown is the cathode current field relation JC(F.) and the neutral field characteristic K010;
A - 8)X 10' A/cm2.
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Fig. 25. Neutral current field relationship tar gallium arsenide nOV., the cathode current

field relation n.V,. and the neutral cathode field relation no V, Parameters are those at lFig. 2 1;
JO- 8X 10' A/cm2
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to 3.0 V results in transient local cathode adjacent accumulation and subse-
quent dipolar propagation as displayed in Fig. 26. The details of Fig. 26 show
the transient transformation of the space charge layer (as reflected in the
electric field distribution) from a depletion layer to a dipole propagating
layer. The dipole layer is quenched at the anode boundary and repeated
transit time oscillations occur. The time-dependent oscillations are dis-
played in Fig. 27 and occur after an initial transient that is qualitatively
similar in structure to that associated with the accumulation cathode and the
uniform field transients. Indeed, the peak current is both a reflection of
overshoot and the influence of the cathode boundary condition which re-
duces its value to a level below that of the uniform field transient. It is
important to note that while the development of a set of conditions for
initiating a propagating domain is ofclear technological significance, it plays
a secondary role to the thrust of this chapter, which is that conditions at the
cathode are likely to be the single most pervasive influence on near- and
submicrometer-length semiconductor devices, much as they are for longer
devices. 16.53

9.95

F000.0 0 2 0.4 0.6 08 10
OTSIAMCE /

Fig. 26a. Transient electric field profile showing nucleation and propagation of high field
domain. Note that propagation is accompanied by low downstream field values and residual
cathode adjacent depletion. Parameters are those ot Fig. 21, F,, - 2 kV/cm; T. - 5 psec,
x,€- 5 pm. and i, - 3 V.
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0.00 3.32 6.64 9.96 13.28 16.60

TIME/C5 psec)
Fig. 27. Current transient following application ofa step change in potential to 3.0 V. Initial

transient is a reflection of nonequilibrium transient transport. The steady long-time transient
reflects the nucleation, propagation, and quenching of a propagating high-field dipole layer.
Parameters are those of Fig. 21; Jo - 8 X 10" A/cm2, ' 3 V. I

F. Nonuniform Fields and Length Scaling

While the calculations in Subsections Il.D and IIL.E were for structures of
different length, the emphasis was on the effects of the boundary. However,
the effects of length scaling, insofar as they affect the velocity field relation- m
ship, (vis-a-vis Fig. 8) will influence the electrical transient and the steady
state field profiles. This is illustrated for two situations. The first situation is
for a uniformly doped structure with the same boundary conditions as givenby Eq. (40) but %kith a length of 0.2 5/jm. The second structure considered is
that ofa n+- n-- n' device, with a I-.ur cathode-to-anode spacing but with avariable-length n- region.

The calculations for the 0.25-pm-long device are displayed in Figs. 28 -36.
The steady state electric field distribution is displayed in Fig. 28 for the
indicated bias levels. Note that although the average fields for the 0.25-pm
device and the 1.0-pm device are the same, the field distributions are quanti-
tatively different. The difference lies in the fact that at the lower bias levels
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Fig. 28. Steady statc distribution of electric field for 0.25-pm uniform structure with inject-
ing cathode contacts. Average field across structure is the same as that otfig. 10 for 1.0-pum-long
device. Parameters for this calculation are listed in the appendix.
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only a marginal amount of electron transfer occurs within the shorter struc-
ture. Note also that the electric field at the cathode is low, as for the I-pm- %
long device.

Figure 29 displays the steady state population of the r-valley as well as the
total carrier density. The first point to note here is that the density ofcarriers
for the given bias level exceeds that for the I-pm-long element. The second
point is that considerably less electron transfer occurs downstream from the
cathode. There is, however, a far more significant aspect to the quantitative
differences between the results of the 0.25- and 1.0-pm devices. The carrier
and velocity distributions for the two structures are different. These differ-
ences are, in part, a result of the fact that conditions at the upstream bound-

6
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\..No NT

3

0,25v

2 

Nr
0.15 N -. ~

08 0!2 0.6 0.8 to

Dlt /0.25pIn
Fig. 29. Distnbution of total (NT) and F-vaiiey (Nr) carrier density. Only marginal transfer

occurs for the lowest bias level. Substantial transfer occurs at the higher bias levels. At all bias
levels, injection level is extremely high, and Nr exceeds No. (N0 - 5 X Il0 /cml.)
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ary are sensitively dependent upon the proximity of the collecting contact.Furtherevidence for this is provided by the velocity distribution displayed in

Fig. 30 which shows higher entrance velocities, but lower exit velocities.
Figure 31 is a plot of current versus voltage for the 0.25-pm-long device.

Again, two points are emphasized. The first point shows the absence of any
negative differential conductance. The second point is that the presence of
increased levels ofcharge injection yield an increase in the drive current over
that of the I-prm-long device.

The transient characteristics at 0.25 pm are displayed in Figs. 32-36. The
results are quantitatively different from that associated with the I-pm device.
The first difference is displayed in the current transient (Fig. 32) which shows
a higher peak current and a smaller current dropback. As revealed in the time
dependent distributions of field (Fig. 33) the higher peak current (greater
than 25%) is in large part due to displacement current contributions. The
higher long-time steady state current level reflects the increased injection
level (Figs. 34 and 35) over that ofthe 1.0-pm calculation. In this regard, it is
again pointed out that the exit velocity for the 0.25-pm structure is below
that for 1.0 pm (Fig. 36). The final point of interest involves the time to

i.0

0.8 0.50 v

0.6 -0.25 
V

VO

0.4 01 *.Ji. ,,

0.2 1. I I

0 0.2 0.4 0.6 08 1.0

DISTANCE x/025jam
Fig. 30. Steady state distribution of the r-valley carrier velocity at three values ofbias. Note

that the velocity increases from cathode to anode, corresponding to a decrease in the r valley
carrier density. Parameters are those of Fig. 28; Vo - 10' cm/sec.
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0.25V
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J
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0
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TIME (I/psec)
Fig. 32. Magnitude of current transient following application of a step change in potential

for a 0.25-pum-long device with injecting contacts. Current peak exceeds that of both the _
uniform field structure and the 1.0-/um device with injecting contacts. Steady state current level
is above that of the 1.0-pm device with injecting contacts. The time to relaxation is 4.9 psec,
which is approximately 40% less than that of the 1.0-pum device with the same average field.
Given the fact that the structure is 0.25/pm in length, this result provides evidence that the
relaxation effects are influenced by nontransit time effects. Parameters are those of Fig. 28;
J - 8 X 10' A/cm2.
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Fig. 33. (a) and (b) Time-dependent evolution of electric field distribution for the 0.25-pm
device subject to a step change in bias of 0.25 V. During the first 0. 1 psec, the field propagates
downstream from the cathode, indicating a propagating accumulation layer. The field down-
stream from the cathode is relatively uniform. To satisfy the constraints of constant voltage
across the device there are displacement current contributions at the bottom half of the struc-
ture that account for much of the difference in the peak currents associated with the 0.25-pm
and l.0-pm devices. Parameters are those of Fig. 32. (Continued on next page.)
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Fig. 34. (a) and (b) Time-dependent evolution of total career density within the 0.25-jim
device. Initial propagation characteristics are similar to those of'the I .0-pm devices. Proximity

effets are introduced after 0. 1 psec and differences in the 0.25-pum and 1.0-pm calculations
arise Parameters are those of Fig. 32; N - 5 X I0"5/cmi.
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Fig. 36. (a) and (b) Distribution of 17-valley carrier velocity following application of a step

change in bias of 0.25 V. The initial velocity distribution is similar to that found in the 1.0-,im
transient study. Downstream velocity values during the first 0. 1 psec are higher than that of the
1.0-jam calculation and correspond in part to the presence ofslightly higher downstream fields.
Parameters are those of Fig. 32; Vo - 10' cm/sec. (Continued on next page,)
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Fig. 36. (Continued)

steady state: This time is shorter for the 0.25-pm electron, but not a factor of
four shorter. The time scales involved in the approach to steady state in-
volves nontransit-time contributions.

G. Transients in n+-n--n + Structures and Length Scaling 4

The final two-terminal structure considered is the n+-n--n device, and
there are several key features to note. The first is that the dominant interfaces
for this structure, the n+-n - and n--n + interfaces, are not the physical
boundaries of the device and are thus likely to have a different effect on the
electrical behavior of the device. The second feature of importance lies in the 0
fact that the electric field profile is highly nonuniform in the steady state and
may dominate the transient and completely camouflage all submicrometer
effects. Third, for a sufficiently small n- regions, the influence of the n+ - n-
and n- - n+ interfaces for carrier confinement may be less prominent. Thus,
this last two-terminal structure offers the most serious example of the inter-

play of the interface and the length of the critical submicrometer region on

J It I
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the electrical characteristics of the submicromter structures. To avoid con-
flict with the influence of the true metal confining contacts, the physical
boundary conditions at the cathode were taken as

n -no, n, - n q, V, - O, V2, " O, (53)

T, - 300 K, T2, -O.

At the anode all second derivatives were set to zero. -

The n+-n--n calculations performed were for the one-dimensional
structure of Fqg 37, in which the n- region was assigned a nominal doping
level of 1O'/cm$ and the n region was at lO'1 /cm 3. The length of the n-

01 0

CATHODE N* N" N AN0OE
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0.8 0 ,
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0.2 0.2 -L'L0.416 inm
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Fig. 37. (a) One-dimensional structure used for calculations. (b) Donor distribution of the
n -
* n- - n, structure used in the study. In the calculations, the width ofthe n- region (defined at

a donor level of 1O/61cm) varied from 0.416 to O. 116 pm. In all calculations the width of the
upstream n* region was unchanged.
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region is specified at the doping level of 10'6/cm 3, and varied from 0.416 to
0.116 #m. The entire structure was fixed at a length of 1.0 pm. The design of
the structure dictates that nonuniform fields and charge densities form
within it. Thus, again the relevant experimental quantity is current density,
rather than velocity. The first set of results is shown in Fig. 38. Figure 38
displays the total current flowing through the device following application of
a voltage pulse of magnitude 1.0 V.

As in the uniform No studies, the calculation is performed in two stages.
The first involves obtaining a steady state solution at 0.01 V. For the second,
using this as an initial condition the bias is raised, in one time step, to 1.0 V.
Application of the bias in one time step replicates the procedure of most of
the uniform field calculations.

As seen in Fg. 38, the current displays an initial peak at approximately
0. 15 psec, followed by a drop in current and a subsequent rise toward a

.9.0I I

'8.0

S.0

10.0

-I ~0 

, I

!S

0.0 '2.0 4.0 6.0 8.0 IO.0 12.0 14.0
TIME (Psec) -

Fig. 38. (a) Time-dependert current following application ofa step change in bias to 1.0 V v
for the n - n--n structure with an n- region of 0.416/pm. The structure of the current profile
displays significant quantitative differences from that ofthe uniform donor calculations. First,
the peak in the current occurs within 0.10 psec, which is below that of the uniform donor
calculations. Second, there is a strong current minimum, followed by relaxation. Steady state
requires approximately 15 psec. Parameters for the calculation are listed in the appendix. (b)
Magnification of dotted area. (From Grubin and Kreskovsky 113).)
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Fig. 38. (Continued)

steady state value. For uniform field calculations in which the voltage is 0
increased in one time step as discussed earlier, there is an initial displacement
current whose magnitude is determined entirely by the computational time
step. Thereafter, all displacement currents are zero and all transients are
particle current transients. (Note that with a load line, displacement currents
would exist.) The situation with the nonuniform field calculation and dis-
placement current contributions is different. Figure 39 displays the particle
current through the device at select instants of time. A comparison of the
magnitude of the particle and total current indicates that within certain key
regions of the device (particularly near the n -n - and n--n interface
regions) that the displacement current dominates the current level. The
general conclusion of this calculation is that since the initial transient is

strongly influenced by displacement current contributions it would be inap-
propriate to assume that the initial current transient is a measure of velocity
overshoot.

The details of the transient, specifically as it relates to displacement cur-
rent contributions, are reflected in the time dependence of the electric field S.
and potential profiles (Figs. 40 and 4 1) and the spatially dependent charge .-
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Fig.39. (a) and (b) Spatial distribution ofparticle current at different instants of time for the % -

parameters of Fig. 38. Also shown is the donor distribution No. The largest spatial variation in
particle current occurs near the interfacial boundaries.
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Fig.40. (a) and M) Distribuion ofelectric field following application ofa bias pulse. Note

the strong temporal variation in field at the upstream interface and within the n- region. The :
propagation characteristics associated with the electric field distribution under uniform donor
conditions arc camouflaged here by the spatial rearrangements within the interface region [113]. "

In addition, note the presence of the strong retarding field, one that is characteristic ofn - n-
n structures (se also Cook and Frey 114.). Parameters am as in Fig. 38. (Continued on next

page )
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Fig. 41. (a) and (b) Spatial distribution of potential within the n -n'-n structures at
different instants of time. Note that in the steady state approximately 1.0 V falls across the
0.41 -pmo-long region. it may be anticipated that this will lead to large-scale injection into the n-

region. Parameters are as in Fig. 38; L - 0.416 pm. (Continued on next page.) "
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density profiles (Figs. 42 and 43). It is noted, however, that as in the uniform
field calculations, immediately following the voltage step, the electric field
increases everywhere by the ratio of the applied bias to the length of the
structure (in this case 10 kV/cm). This initial increase introduces a displace-
ment current whose magnitude does not correctly represent the physical -
transient but rather the impulsive change in the applied potential over a
single, small but finite time step. Physically accurate calculations follow the
initial time step and are discussed below.

Prior to the application of the step potential a retarding field is formed at
the upstream n'-n - interface limiting further injection of space charge into
the n- region. This retarding field, which at its maximum is positive in sign. is
significantly reduced following application of the step potential; carrier in-
jection into the n- region is thereby resumed. Two events accompany this
enhanced injection. First, to accommodate the increased charge within the
n region Gauss's law dictates that the electric field within the region must
become increasingly negative. Second, the space charge injection is self-lim-
iting in that as the process of injection proceeds, the retarding field begins to

~ ~ "r u
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Fig. 42. (a) and (b) Time-dependent evolution of the total carrier concentration within the
n--n--n structure (131. During the early transient, the space charge layer displays a charac-
teristic propagation downstream from the cathode, as seen in the uniform donor calculations.
Insofar as the form of the electric field profile is controlled by differences between n and no , these "
propagation characteristics lose the distinction that emerges from the uniform donor calcula-
tions. The injection level is almost an order of magnitude higher than the n- donor level.
Parameters are as in Fig. 38. (Continued on next page.)
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Fig. 43. (a) and (b) Time-dependent evolution of the distribution of satellite valley camer.

An inconsequential number of carriers is scattered into the satellite valley during the early

transient (I < 0.45 psec). Electron transfer is apparent in the steady state Parameters are as in
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reform and positive field values result at the upstream n+-n - interface. The
process of an increased and positive retarding field accompanied by an
increasingly negative field within the n- region and the constraint of the fixed
potential leads to the spatially dependent displacement currents inferred
from Fig. 39. Note that in steady state a significant amount of injected charge
resides at the downstream n--n* interface and results in the presence of a
downstream retarding field.

Notwithstanding the displacement current contributions, it is necessary to
determine the extent to which the carrier velocity can exceed the equilibrium
values. For the structure considered herein with L.- = 0.416 Am, most ofthe
current is transported by the r-valley carriers. For this case, the mean carrier
velocity thereby exceeds the steady state value. This is seen in Figs. 44 and 45,
the latter displaying a plot of the r-valley temperature. The steady state
distribution is qualitatively similar to that reported in a number of different
studies [14- 161. In particular, the presence of a local cooling at the n+-n -

interface is noted [14].
There are several noteworthy features associated with Fig. 44. First, there

is the progressive movement of the velocity layer toward the downstream
n-- n+ interface. This migration is associated with the spatial and temporal
derivatives on the left-hand side of Eq. (2). Second, there is a progressive
decrease in the velocity in the n+ regions as dictated by the decreasing field
within these regions. Indeed, the possibility exists for the carriers to sustain a
transient separation at the n+-n - interface, with carriers on the upstream
portion of the interface moving toward the cathode and carriers at the down-
stream portion of the interface moving toward the downstream boundary.
This separation is accompanied by compensating displacement current con-
tributions.

The results clearly indicate the presence of velocity overshoot under non-
uniform field conditions. Under uniform field conditions, the transient fol- V
lowing the peak velocity is dominated by electron transfer. The question 0
then becomes: do similar phenomena occur when nonuniform fields are RM
present? Figure 46 is a plot of the time evolution of the total carrier density
and the r-valley carrier density at two points within the n - n--n* struc-
ture. It is seen that as in the uniform donor calculations at the upstream
portion of the structure very little transfer occurs. Most of the transfer is at
the downstream portion of the structure. One necessary conclusion as before
is that the uniform field calculations bear little resemblance to the transients
occurring in the n+-n--n + structure.

We next consider the dependence of the results on the length of the n-
region and note the expectation that the shorter the active region the higher
the dc drive current [ 10]. For the n+-n--n + structure, as in the uniform N0
structure with injecting contacts, a significant contribution to the current

b
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Fig. 46. Transient distribution of total (0, 6) and r7-valley (0, A) carrier density at two
points within the n - n--n structure. At 0.2 pm (0, ), there is no electron transfer of anv
significance. At 0.5 urn (6, A), electron transfer occurs at the end ofthe transient. Parameters

are as in Fig. 38.

arises from the excess charge injected into the n- region. This point was also
made by East and Blakey [ 16], who also examined the dependence ofcurrent
and voltage on n- region length. A second point of importance here concerns
determining which portion of the structure dominates its transport. It may
be intuitively expected that for the structure considered it is the n- region
that dominates. This appears to be the case for the preceding discussion. But
we may expect that for a sufficiently small n- region, no single region domi-
nates. In the calculations reported here, the absence of a single dominating
region becomes apparent at higher voltage levels and for the case when
L. = 0. 1 16/pm. These results are illustrated in Figs. 47 - 53, with particular
attention paid to voltage sharing and electron transfer in the n' region as the
n- region is reduced in size. Figure 47 is a sketch of the background doping

, - . .. .€,, ,",r " " v"' " ' 0
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Fig. 48. Steady state distribution of potential for structures A, B, and C subject to a bias of
1.0 V. For structures B and C the potential drop is confined mainly to the n- region. For
structurm A a significant fraction of potential falls across the n region.
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Fig. 49. Steady state distribution of total carrier concentration for structures A, B, and C.

Note, for all three structures, the free carrier concentration closely traces the donor variation.
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Fig. 51. Distribution of r7-vallev carrier velocity for structures A, B, and C Peak velocitv

gradually increases as the n- region decreases in length. Additionally, the upstream and down.-
stream carrier velocities increase as the n- region decreases in length.
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Fig. 52. Distribution of r-valley electron temperature for the three structures A, B, and C.

Electron temperature distribution is qualitatively different for structure A. A longer down-
stream n* region is needed before the temperature approaches 300 K.
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Fig. S3. Steady state distribution of electric field for the three structures A. B, and C. Note
that for structure A, a large residual field remains across the downstream N layer.

level associated with the variable n- region. Within these regions and at a bias
of I V, the potential is calculated self-consistently and is displayed in Fig. 48.
It is noted that for n- regions of length 0.266 and 0.416 pm, most of the
potential drop is across the n- region. For the smallest region a substantial
potential drop falls across the n region. The origins ofthis enhanced poten-
tial drop may be found in examining the self-consistently computed charge
distribution (Fig. 49) which shows the presence ofan excess charge accumu-
lation at the downstream n-- n' interface, resulting in a change in sign of the
curvature of the potential. The distribution of r-valley carriers is displayed
in Fig. 50, where the presence of a substantial electron transfer in the n'
region is noted. The carrier velocity (Fig. 5 1) and electron temperature (Fig.52) within the r valley display the expected increases for the shorter n-
region. The electric field distribution, shown in Fig. 53, displays higher field
values within the n' region.

The significance of the preceding result is that while variations in the total
charge density tend to screen variations in the doping profile of the structure,
the potential drop across the n- region may be small enough to allow a
substantial drop across the downstream n+ regions thereby permitting elec-
tron transfer to occur away from the n- region. This, of course, is not

M,"V
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unexpected. It is implicit in the design of Gunn oscillators with doping
variations assigned the task of domain nucleation sites. The current -voltage
characteristics, therefore, ame expected to reflect a complex set of electrical
phenomena.

Figure 54 displays a series of current-versus-voltage curves for ti' - n--n
structures with the indicated n- region length. Each curve displays J/J,(
versus rk/44r. The J,,f is the computed value ofcurrent at 0,, - 0.25 V. The
valued J,df s indicated in the figure caption. Because of the intuitive relation-
ship between the space charge injection properties of the submicrometer

n+- n--. n+ structure and those associated with Child's law, a power law J004
was extracted. Note that J,. increases as the n- region decreases in length. At
low bias levels the current-voltage relationship appears to follow a power

J= #1.7

J =: ,1

L,4 : O4Gsm
Jlz0-259 J

LM=0.266,

Jret: 20.6 9 Jr

4r 3 .52 if

Fig. 54. Steady state current -voltage characteristics for the three structures A. B. and C
The current level for structure A is higher than that of B which in turn is higher than C. Note that
the low-field resistance of structure A is the lowest of the three. Also included for reference are
the Child's law J - 61''. J - 61-5, and J - 4) curves. J,4 - 1.6 X 10' A/cm9; 6w, -0.25 V.
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relationship that is slightly less than JIJ, = (0/l,e)y with y - .7 (as com-
pared to a Child's law relationship where y = 1.5). At higher values of bias
there is enhanced sublinearity in the current-voltage relationship, due in
part to electron transfer to the satellite valleys.

As indicated above, a considerable amount of electron transfer occurs in
the downstream portion of the n+ region when the n- region is decreased in
length. Indeed, the detailed calculations indicate that the relative amount of
electron transfer increases as the n- region decreases in length. At first
glance, this result appears to contradict all that has been discussed about
transport in submicrometer devices. But it is not unusual when it is realized
that as the n- region decreases in length a greater fraction of the voltage drop
falls across the n+ regions of the device. It is this latter feature that is responsi-
ble for the enhanced transfer. To place this in different terms, the active
region length of the device increases as the n- region becomes insignificantly
small.

IV. Conclusions

The major technological interest in transient transport arises from the
predictions of unusually high mean carrier velocities. The initial discussions
of these high velocity values was for uniform space charge distributions, but
the results were thought to be relevant for those situations where the mean
carrier energy was insufficient to lead to substantial electron transfer in
gallium arsenide. Thus the trend developed toward submicrometer-scale
devices. The complication that arises in submicrometer devices is that the
boundary conditions will be the determinant as to whether high velocities
will be attained. Additionally, the constraints of current continuity dictate
whether high velocities will be accompanied by high carrier densities. For
example, in the case of injecting contacts the velocity of the entering carriers S
was significantly below that within the interior of the semiconductor. The
situation was reversed for the case of partially blocking contact conditions.
shoot in submicrometer structures reflects the presence of velocity overshoot

and displacement current effects. It is not possible, in a simple way, to ..
separate the two, with the result that transient measurements of overshoot -
require extreme care in interpretation. (2) Relaxation times to steady state
are dominated by the dominating boundary; e.g., either the metal contact or
the critical interface. Relaxation times do not scale linearly with device
length. The relaxation time scales monotonically with length. (3) Transient
overshoot effects are dependent upon rise times and the time for relevant
field rearrangement within the structure.
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APPENDIX. DIMENSIONLESS EQUATIONS USED IN THE
NUMERICAL SIMULATIONS

The continuity equations in dimensionless form are as follows:

(i) Equation (3):

an*, = o nf, + (n* - n*)f2.

(ii) Equation (5):

dt" = 3 WV7( 1''  + Wn - n*,)1'2*). Ir

of* 0ax

2P
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The dimensional terms are identified in the following tabulation:

f= r/r, A - r2/r,,

with X*= I/~, 1 I/W,

The momentum balance equations in dimensionless form are as follows:

(i) Equation (23):
On iVr an* a-Jf1 8i ___

at* 6x' mM2 xX,

+ p1*I3

(ii) Equation (24): R iC~*

a(n* - n*)V2i a (n* n-)8W

81* 2 a (*..n*-V*VR*i+f 2 x

012

+ -U 2 _(n* - n*)V24..
Re -m*2 aX 2

The dimensionless terms and parameters are identified in the following
tabulation:

M 1= ni mSf 2 M1W

R,= krnR2~ = km,

Rrr= kB/n 2  R=kBm2

rIn"

f3 r~ =/f = rI~
= i,/f Ti, 142 i2 /Pryl
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with

Pf= /O(mwV' M- ./~

Re = x.Vn(m(fd

The energy balance equations in dimensionless form are as follows:

(i) Equation (30):

a,*T an V (y - )n ?T ?1 Vj+ I
.3x7 Olx,* Re -Pr m *c.*

X- * '-n 1 Tf+(n-n)T2f 6

+ yy J)2 (2n*f- nh n1ft+n* n )f 2J.

(ii) Equation (31): c H0

at* -34aV

-(n* - n~l)Tlf7 + n~jT~fs.

The dimensionless terms and parameters are identified in the following

tabulation:

= r5/r~~ff = r/ff
f= rfrs = rI~

1= Kj/Kft* = K 2 /K~f,

C, = jR C, = jR2 C, =.R f,

=, Cv,(eimfKmf.0

Ox 4
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Poisson's equation in dimensionless form:

(i) Equation (I):
a24,*

Sn(n*, + (n" - n) - nfl.

The dimensionless terms and parameters are

Sn=x,'en,,r n* =no

The boundary conditions in dimensionless form are:

(i) Equation (32):

O'" = O_1 = O =VOl = O ' = O T 2 0
Ox* Ox* Ox* Ox* Ox* ax*

x=O, @*=0,
at

x=L, .

(ii) Equation (40):
Vn o 2n* 0  ,4 * ,

O 2 ' "I~Ox = ax*$ C xV_,

-= 0, T, = T T2  = 0' 0.

(iii) Equation (41):
en" oqn;' _o&V; _ o2VI/ a T_ O TT 6" _ '
Ox'2  Ox2  Ox'2  = Ox 2  Ox,2  Ox'2 O0

(iv) Equation (53):

_f2  . o~i-%2 al*o
'~~'~ 1 f 2  O 4 2 Ox

n* = n, n* , = 71 f2 no, x-- = .-- •

T O, =-O , -T = 0 , = 0 ,
ax''~ =

wheref, andf 2 are evaluated at T= Tf. Common parameters and dimen- 2
sionless reference quantities are given in Table A-I.
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TABLE A-1

Parmeters

Dimensionless Reference Quantities

Figure number

Parameter 1-4 9-19 21-27 28-36 37-53

Device length (.um) 1.0 1.0 5.0 0.25 1.0
xa (pm) 1.0 1.0 5.0 0.25 0.75
n,. (cm ) 5. x t0s S. X 10"5 5. X 20's  5. X 10"5 I. X 10"
t. (psec) 1.0 1.0 5.0 0.25 0.75
FW (10' 2/Oc) 1.0 1.0 0.2 4.0 1.33
Kw (J/Kcmscc) 2.0 X10- 4 2.0 X10 - 6  2.0 Xl0-' 2.0 X10 - ' 4.14XI0-5
/.4 (gm/cm -sec) 5.74 X 20-" 5.74 X [0-" 5.74 X 10- 1  5.74 X 10-li 1.15 X 10-'

Re 53.17 53.17 265.86 13.29 39.88
Sn 8.16 8.16 204.00 0.51 91.84

r 0.6 0.6 0.5 0.25 1.0
1 .0 1.0 2.0 0.25
2.0 2.0 1.5 0.50

TI - 2.0 2.0 1.0 L.
- 1.56 0.08 6.25

Common parameters

vW- I06 cm/sec mI- I c- 1.0
46,, - 1.0 V r Tm - 3.31 K2 - 1.0
m.,-6.10 X 10-"g R, - 1.0 Pr- 9.40

ke- 1.38 X 10- 2 J/K R,- 1.0 Pf- 2.62
R, - 2.26 X 10i J/K • gm ,4l - 1.0 M- 2.97

T- 300 K p* - 1.0
V. - 3.36 X 10' cm/sec

,,J

S1

• rI
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BAND STRUCTURE DEPENDENT TRANSIENT TRANSPORT [N NEAR AND SUBNICRON LENGTH SEMICONDUCTOR DEVICES*

ILL1. GRUIIIN a-nd J.P. KRESKOVSKY

Scientific Researcs Associates. Inc., Clastonburg, Connecticut 06033, USA

Scaling principles are applied to thc moments of the Boltzmann transport equation to establish
guidelines for submicron device/material selection.

INTROD)UCTION RELEVANT TRANSPORT EQUATIONS AND SCALING

The rapid advances In numerical methods to The BTE for electrons In a parabolic band

calcuelate hand structure parameters on demand with effective mass m Is:

(flow ),and the need to provide choices for

device applicable semiconductors has spurred at~ ke

interest in the development of guidelines for +~ hk iv1)

material selection. The guidelines must ad-- r . kfk(-fl)

dress high speed, hot carrier, requirements,

and determine the constraints these materials

impose. In the past, device structures, such dkk'kfk)1fk1

as the field effect transistor, submitted to

figures of merit which taught that high mo- where W(k,k') is the probability of a carrier

bility and/or saturated drift velocity were undergoing a transition from the state k to

beneficial. These figures of merit were de- the state W. As used In submicron transport

rived from the steady state field dependent W(k~k') is usually separated into contribu-

velocity relationships. The situation, as is tions from each band. Scaling as discussed by

now known, is that the equilibrium transport Thornber is typified by the following exam-

parameters are not relevant for submicron de- pies: [11 Under uniform field time independent

vices. To treat these dev'ices a set of scaling conditions, scaling W by a constant 1, i.e.,

guidelines, discussed by Th1ornber' is intro- W(k,k')=XW(k,k'), results in an alteration of

tioced. These guidelines; result from an the mean carrier velocity V(F)='.j(X-) where

nnalysis of the Hn!tzf-ann transnort equation the latter is the scaled mecan velocity and

SH~f ir. -. hicli to-':th ari- ti-i scales, n

satcerin,? ratces iro 7lee -e application

ni thes.' ~ I :oe irx dev ices was V E f--fd 3kfdk (2

in,'z~. to tini forn

~'.Id tr'-'~r: .~''tsci't- .'~helo.. '7or If 1=1 represeuits ra- the" , as .een

;P'1 "'-i concluszion of Ref. 4,. the field do'por,:ent ve!ocitv rtslati:*

<!,Ia l elvant de-vice figiires i-;, aurr tro)-. thre r of: u ~:v i

of murur are depende'nt uoxn their critical ru i oi t.rrar.hvtlr: ~V 9

feature size, and the resolts obtained for or 101. Allitionalletv ' coAI 2 orve heArs

micron len),'thi srriwrorvs are- n-it necessarily s, rh:i~ re*s.-:-') litcu to tin1. ~
apipliable ton sobtmicroi, stingt',res. volnnci te of IS !I l.. c,
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system Is altered, with V)(F(t).tI .  in Crubtn ,et at. in calculating transport

V(F/(kt).Itl. The implication is that the first three moments of the BTE are

relaxation effects are more rapid for A uttilized. The scaling arguments as applied to

greater than or equal to unity, as illustrated the BTE are applicable to the moment equations
below. 131 The situation with spatial scaling and the conceptual results are interchangable.

Is similar. If the RTE is solved for a

spatially varying sinusoidal field, and MOMENTS OF TI1 AOLTZMANJ

recomputed for a constant scattering scaling, TRANSPORT EQUATION (MTE)

it is found that similar velocity variations The three moment equations are: continuity.

will occur for the scaled device but over the momentum and energy balance; and are written

distance L/, providing the amplitude of the for two species of carriers. Thus, n-ni+n 2 ,

field is increased by the factor A. where nt and n2 designate the population of

the r and L valley, respectively. Poisson's

Apart from the fact that practical constant equation is coupled to the moment equations,

scattering scaling is not possible, as the first set of which involves continuity:

discussed below, the physical situation is

more complex then indicated because _=__IJ - n + (n-n (4)a~t axi m I

self-consistency has been ignored. Thus, a
Poissons equation: Here F designates the scattering rate. It is

--(n- n (3) noted for parabolic bands hkJl/mal vii.

An equation similar to (4) describes transient
must be solved. If x is altered by the con- population changes in the L valley. Vhe. the

scant 1, the right hand side of equation (3) two are combined, a global continuity eccation

is increased by the factor A 2 , and the donor results.

and carrier density must be altered.

an a [n h ! ] (5
- --j + (n - n,)The relevance of altering all scattering rates at d i ,

by the same constant is root. and is intro-

duced as a starting point for discussion. It

differs fron the classical scaling as discus- The quantity in the brackets of ec_-: ()

sed, e.g., by 52,-Lev insofar as it focuses is the velocity 'u densiv, ,e

2::e: -ion on ,-tera:ions in the nobility svsterm and is rel-ed co a e2,-

.~h .:: o:, trirsi, ch'aracteristics of denendent dri' t C..,city a-.......

".-- struc:..e .:1 . -' :he laci er will t, :.'l current . , ::' ,1 C

... . 1 ,n c~ r Ct~ 4r .
- : '. ',i . ': ',', , . < < - ",: ( .', l ., ,, ? . i w . - .n 1 . .i - -, , . . --- , - , - -.

For
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a a ti4 t~~ a.tong, and subject to the indicated values of
j,1  - W + 1 nI bias. The Inset indicates that for X-2. an

Tt W fnIdentical result is be obtained for a length
il' i of 0.5 microns with an average field twice

al -nuT ax(nthat o the unsealed calculation. This result

indicates the nonuniformities to be expected
(7) In InP, opce results for GaAs are known.

Similarly, the results for 1.-1/2 are
where representative of InGaAs. Figure 2 shows the

current transient for the GaAs structure
3 Iih kel W - +U 8
U, -kT' 2m, (8 subject to an Instantaneous change in bias to

1.0 volts. There is a current overshoot: that

The quantity Qi Is zero for spherically dis- is related in part to velocity overshoot. The3

tribution functions; more generally It repre- significance of figure 2 is the indication

sents a flow of heat and is treated phenomeno- that InP Is likeky to be faster than GaAs,

logically through analogy to Fourier's law. whereas that GalnAs is likely to be slower.

Similar equations occur for the L valley. Note results with Gunn diodes appear to

indicate an InP upper frequency limit that is
CALCULATIONS WITH CONSTANT SCALING PARAMETERS higher than that of comparably prepared GaAs

To illustrate. the governing equations are diodes; although the evidence is not

altered through the prescriptions of second unequivocal that the origin of this difference

section. For this case the unsealed GaAs de-

vice sustains spatially non-uniform transport

arising from injecting cathode boundary condi-

cions. 
.

SCALING Xre!

For the first set of calculations all scatter- 0.8 - 1 1. )A

ing rates are altered by the constant A~. With 2 0. 5 P.0 2 OT

all velocities neasured against 108 cm/sec, all 0.6 - 0.25 !i

1 0reference times and Lengths are scaled as: r VLZ

ttXx~f. For -, constan: potential,

scaling *.x requires a alteration in the ref- 0.4 T

erence densitv. Tsn-.k 2  (It is noted

that h,1 Itu b~a -:. contair.s a viscous

con cr ib.uon vlich 1 rthe sc.2e1 scem is

!i)v!~ s -h ceergy )i lanco eqtia-

* ~.::ic~isithor-lal cilbitIctivirt

* re. tra i: irt.' I b the same
OtSTA,:E_/ xRIER

r for.i . *i e !I,. k"11C.11"d n .tr ial, subt ect to -,C . it Ref.
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lie3. eetbihdfrscln aeil .IVvru deformation coupling coefficient

an eieadue o aigbodcma-and intervalley separation, Rf. 4. C

Then abven tu iniatesrthlt a etg. of guid-C

In~aAs, Si, and GaAs. The principle conclu- of field. But of more importance, is that an

sian from this scaling scudy is that for increased density serves to increase the non-

suhnicron devices any alteration in the band uniformity of the space charge distribution

structure that increases either the number of resulting in reductions in current level that

carriers in the r' valley, increases the carri- are significantly higher than those aris-

er IM,3bility, will yield an improved figure of ing from ionized impurity scattering. This

merit for suhnicron feature size devices, result tends to camaflouge interpretation o:

Saturated drift velocity, as obtained from the mesurements concerning the effects of impurity

,,a v elocit of7 the ca-:iers is not a signif- scattering.

:c: '~: o eri: :37 submicon devices. A
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is completely accounted for by the results of are shown in f igure 11. The Increased

scaling. deformation potential coupling coefficient

results In an increased saturated drift

The situation above is artificial but there velocity, beat a corresponding decrease In the

are relevant extrapolations. For example, the r valley velocity at high values of electric

effects of intervalley scattering increases as field. Tie reslt have the following signifi-

the length of the structure increases. This cance: Present choice of semicondtictor

result suggests that intervalley scattering materials for such devices a% the field effect

effects at scaled field values becomes more transistor are based upon several critical

prominant in smaller structural lengths in the material parameters, one of which is the sat-

1-2 material than in either the X-1/2, or X-i urated drift velocity, Indeed, part of the

material. It is noted that in scaling these Si/GaAs controversy is based on the value of

structures, an increasing scaling parameter is the electron saturated drift velocity, which

matched by a decreasing background doping. is higher for Si. The situation for submicron

Should scaling be performed without a devices is that r valley transport dominates

comparable decrease in doping level field device behavior, as revealed by supplementary

nonuniformities would be more pronounced. one and two dimensional studies (see

Hauser, 7et aL). The effect, of this parameter

CALCULATIONS WITH VARIABLE PARAMETERS variation is shown in figure 4 which displays

The relevance of scaling is emphasized in the current volcte relations for a 1/4

those cases where the scattering rates are micron structure w.ith a doping level of

nonuniformly changed. Here two types of 8 xc 10 1 cm 3, varia )le intervalley separation;

calculations illustrate, one in which all hut and for a 1.0 micron structure variable

one of the scattering elements of GaAs, the coupling coefficient. w~ith a doping of

'Cintervalley deformation potential coefficient, 5K10j~15(cn 3  . B.:-h calculations are for

is constant. In the second, only the inter- nonuniform fields arising f ro- injecting

valley energy separation is altered. The contacts. Note: .rthe va-.iable coupling

uniform field dependent mean carrier ve 2 cirv coefficient calcul :ions the scaled material

0.6_____________________with the highest no-ility is th~at v~etding the

SCALING Jr.~:( 11 highest current Ie-'s h turn around to a

05 X* evS...c' Af~ o. auae ritvlct dominated material

0 .5 z. IC~'" ,Z 2a occurs at longer device lengths. The

04 * 2. /~. .5~Situation vit var ia b :.e r a ey

Separation is 7h~ igher cur-e- fv[ or

03fofthe~ la rver se:).i r. a,'.-iin c.: .)dn:to
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A STUDY OF NEAR-MICRON JnP TRANSFERRED ELECTRON DEVICES

J. CZEKAi and H.P.' SHAM, Dept. of Electrical & Computer Engineering, Iayne State University.
Detroit, HI 48202*;J. EAST. Dept. of Electrical & Computer Engineering, University of Michigan,
Ann Arbor. MI 48109; P.A. BLAIEY, Dept. of Electrical Engineering. Arizona State University,
Tempe, AZ; H.L. GRUSIN, Scientific Research Associates. Glastonbury, CT 06033

We have experimentally investigated a large number of InP Transferred Electron Devices ranging
from 1 to 2 microns in thickness, and have numerically simulated their behavior using both a drift
and diffusion model and a Boltzmann transport equation approach. We were able to fit the static
1(V) curves and threshold conditions rather well by a proper choice of ideality factor. n, in the
control characteristic, which we assumed to be that of a Schottky diode.

1. INTRODUCTION the active region doped n-type. The carrier

Ue have obtained good agreement between our concentration varied from 7.6 to 9.S 1SlS/ca 3

experimental results and numerical simulations with active region lengths varying from 1.60 to

of transport in transferred electron InP devices 1.96 nicrons. The cathode contacts consisted of

as small as 1.0 icron . The amplification and %/Ni/Ge-InP junctions while the anode contact

oscillatory characteristics of the devices were was an n-n+ junction with the n region doped to

examined in high-Q resonant cavities in the about 1,.)171c94 The devices were packaged on a

75-100 Ghz region. Theoretically, we used a threaded stud suitable for operation in the

standard drift and diffusion nodel to predict 75-100 G1z frequency range.
both the static and dynamic characteristics of

the device, and calculated the velocity-field The oscillatory characteristics were examined

curve using the Boltznann transport equation while the device was inserted in a high-Q narrow

(BT;). Our work has centered on the vital role bandwidth resonant cavity using a radial hat

that contacts play in influencing hot electron bias choke. Uhile mounted in this environment

phenomena. The cathode contacts were the followingj data were collected: pulsed (to

characterize4 as Schottky diodes, and the prevent burnout) T(V) characteristics,

ile.jl ity factor, n, was the single parameter oscillation threshold point, frequency of

e-iployeJ to fit the prethreshold current-voltage oscillation, and output power. (Because of the

(()) characteristics. From the temoerature relatively high rate of burnout, once

iependence of the dc to ac conversion oscillations were observed (on a power m'eter)

efficiency, we have also been able to estinate the bias wis not increased by nore than a few

the rianner in wOiich electrons Pnter into the tenths of a volt.)

.ictive region for specific contacts.

Al of the devices displayed sone degree of

'. EXPERIMF.14T current saturation prior to the onset of

Tne devices, pro'i.Ied by the 'Yarian Solid oscilation. Th e frequency of oscillation was

State Microwive flivision, were constructed with determined primarily hy thf! radius of the radial

*Supported by NSF Grant ECS 82-11841

03784363/85/S03.30 © Elsevier Scie.ce Publishers B.V.
i North-Hollnd Plivsic Publishing Division)
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hat used. Ihen microwave power was observed, narrow-band circuits displayed a shift In the
the E-H tuner, serving as an impedance gain curve along the frequency axis (90 to 96
transformer, was adjusted to give a max GHz) as the back short was moved with almost no
reading. The region of power observed %as, in decrease In gain at the peak gain curve.
general, a sharp peak with almost no power
readings greater than a milliwatt being observed 3. THEORY
at frequencies of more than -0.5 rHz away from Theoretical calculations were carried out
the center frequency of oscillation (Fo). asstinq the cathode junction was a .wodified
Efficiencies as high as S% at a duty cycle of Schottky barier having the form (3)

t% were observed (40 Ml RF power at 85.6 GHz).
In general, back short tuning was not able to I a Ir (exp(-qV/nkT)-exp(((I/n)-l)qV/kT))
shift Fo along the frequency spectrum in any
systematic manner, where Ir is the reverse saturation current, q

the electronic charge, and k the Boltzmann
It is interesting to note that some devices constant. The analysis utilized the drift and

with low current levels wnuld not oscillate in diffusion equation. which was solved by means of
the pulsed mode but did oscillate in the CW finite diferences. I(V) curves were obtained

regime. This behavior can be attributed to and fit to the experimentally generated curves
heating, which lowers the velocity-field (V(E)) by varying the ideality factor n. They

curve and increases the cathode current levels, predicted the threshold point to better than
This provides for an intersection of the V(E) 10, 4nd also the region of bias corresponding
curve with the cathode control characteristic; to gain and loss 2'3. The high efficiency
domain nucleation results1 .2. devices were found to have the intersection of

the cathode control characteristic and V(E)
Investigation of the amplification curve in the region near velocity saturation, as

characteristics were carried out using a shown in Figure 1. The influence of the cathode

reflection amplifier configuration. The tests contact caused most of the device field to fall

were run in the CI mode in order to obtain more within the NDH region, with the field decreasing
accurate readings from the power detector. The gradually from cathode to anode. Figure 2

observed behavior fell into several catagories compares an experimentally measured and
(again depending on which choke was used): 1) numerically determined I(V) curve for a

oscillation only, with no prethreshold particular sample.

amplification; 21 amplification (increasing with

increasing bias) followed by oscillation; 3) Solutions of the first 3 moments of the BTE 4

an -lification increasing then decreasing with for uniform field devices predicts V(E) S
increasing bias followed hy (in some cases) trajectories, for the large signal case, that

oscillations. .hile the highest efficiency vary markedly from the static V(E) relationship.

device did give the highest gain (12d at q0 Regions of velocity overshoot, DN40, and a region

GHZ), the higher efficiency devices generally of velocity saturation as the RF voltage

did not produce gains higher than the lower decreases are observed. The situation for s-all

efficiency devices. Furthe.ore, the highest signals is different. The V(E) trajectory

gains were obtained just prior to reaching the follows the static curve more closely.

threshold current and voltage conditions. The Calculations utilizing non-uniform field
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Conflguratlons are presently belg carried out. 4. COUJCMS|ONS

The optima swall signal gains seen to Occur In In. sumary, ner-micro. laP TEis twere
devices with relatively uniform field studied experimentally and theoretically. A

configurations (near-thresheld); the results In model using the drift and diffusion equation
the vull signal regime may not differ greatly accurately models the static I(V) characteristic

from what is being reported here. as well as predicts the threshold values. The

highest values of computed small-signal negative

resistance were obtained for devices with nearly

uniform field configurations with the highest

L, • fields at the cathode in the shallow N04 regime.
Since the electric field becomes highly

non-uniform and increases sharply from cathode

to anode for biases greater than threshold, high

eficiency devices will have to be. stabilized by
external circuitry to achieve maximum gain.

Although it has been shown that in the large

signal regime the V(E) trajectory does not

follow the static curve, a drift and diffusion

analysis can still be utilized to evaluate the
c" pe4 potential performance of these devices as

oscillators and amplifiers. We have seen that[

FIGURE 1 high efficiency devices have most of the device

Cathode control characteristic and V(E) curve in the NON region at threshold, providing for a

larger overall "growth-factor' for these devices
g.M" over other field configurations. Finally, it

has again been demonstrated that it is the 0
cathode contact that controls not only the
oscillatory but also the amplifying behavior of

eu the device.
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TRANSPORT AND MATERIAL CONSIDERATIONS FOR SUBMICRON DEVICES

H.L. GRUBIN

Scientific Research Associates Inc.

Glastonbury, Connecticut USA

INTRODUCTION

The purpose of this lecture series is to identify the
important areas of device physics and the questions related to
them. In addressing these problems we will emphasize an
understanding of transport within these devices and the role of the
circuit, the boundaries and the material variations. We will also
scrutinize some of the formal underpinnings of device physics.
Thus, the lectures will be primarily theoretical. With regard to
experimental device physics studies, direct evidence of high speed,
submicron scale effects is sparse, and is likely to remain so for
the near future. Although, here, recent activities by workers at
Bell', Los Alamos 2, and the University of Paris--Orsay3 , on
submicron, high speed device phenotienology, may provide some
important keys to device related effects

In the absence of a broad experimental program in the
area of submicron devices, we are likely to see an increased
reliance on numerical simulation as the principle vehicle for
determining the physics of device operation. This, of course,
places a considerable burden on those who perform device
simulations. But the general availability of numerical programs to
those who do not develop them will widen the use of numerical
studies, particularly in a direct coupling to experiment. In any

case, the accumulated studies of the past half century has tended
to provide a natural classification of device physics into three
groupings: (i) classical device physics, (2) submicron device
physics, and (3) ultrasubmicron device physics, where quantum
effects may dominate.

-AWE



The domain of classical semiconductor device physics is one
where the temporal scales of interest are generally large enough
that accelerative effects are often ignored. These approximations
find their most common application in the drift and diffusion
equations, where the relation between carrier velocity and applied
field is in terms of a local mobility.

The first departure from classical device physics introduces
the idea of non-locality where the response of a particle at a
point "x" and time "t" is dependent on disturbances at earlier
times t'<t and at points x'<x. This is the critical feature of the
Boltzmann transport equation (BTE), and is one that has found
expression in Chambers 4 path integral solutions as well as some
initial work of Pippard5. While non-local effects have appeared 0
only recently in semiconductor device studies, they have been the
object of serious study for the past twenty-five years. Such
phenomena as the anomalous skin effect6 , magneto-acoustic
attenuation7 are based on these effects. They are also critical
to hydrodynamic studies. a

Other departures arise when spatial scales are of the order of
the deBroglie wavelength associated with a quasi-particle, and
arise when scattering events can no longer be regarded as occurring
instantaneously. Approximate spatial and temporal scales
associated with these three device divisions are identified in the a
first two tables and figure 1. Further, each of the above device
groupings are identified by a specific set of generic device
equations. The key point that must be kept in mind, is that the
development of these equations is keyed to the development of high
frequency, high speed electronic devices. This will be the common
thread through our entire discussion, and also forms the basis for ,
this NATO ASI.

TABLE 1. Approximate spatial scales (GaAs)

Term Value

Active region length lO'Scm, 10'4cm

Impurity separation (N0 -1/3) 10"cCM @ 10S/cm 3

10"6 m @ 10'/cm3

Mean free path 106 cm

Thermal deBroglie wavelength 2.6xlO-6 cm

-2-
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TABLE 2. Approximate temporal scales (GaAs)

Term Value

Transit time (for v-2xl07 /cm/s) 5xIO' 3 s @ L-lO'Scm
5xIO- 12s @ L-10 4 cm

Momentum relaxation 3x10-1 3s @ 300K

Collision duration 2xlO- 1 4s

10 625
,,l Si

0 -500
0 '(

6-1 -375 0g-~0

0rW .0 10.19 15

EFFECTIVE MASS (m*/m0 )

FIGURE I . Thermal deBroglie wavelength vs effective mass.

We begin the discussion of submicron device physics with a
simple description of the Boltzmann transport equation and its
approximate solutions, as well as those areas of such common
interest as overshoot phenomena.

THE BOLTZMANN TRANSPORT EQUATION

The conceptual picture most frequently used to describe
conduction in semiconductors is that of a gas of carriers
interacting with external forces. The gas is characterized by the

fact that the state of any of its constituents, e.g., electrons,
are independent of all others except at the instant of collision.The state of each constituent is described by specifying its

-3-

'u40



position and momentum at each instant of time. Rather than
treating the transport of individual particles, transport within
the semiconductor is discussed statistically. Volume elements
within phase space are identified as

d3r - dx~dx2dx3  (1)

dp - dp~dp2dp3  (2)

The differentials above are chosen large enough to contain a
large number of carriers and small enough to permit the neglect of
density variations within the differential elements.

The number of particles at a point (r, p) is taken as

dN - f(r,p,t)d3rd3p (3)

which may be taken as the definition of the distribution function.
Several other definitions are in order. The total number of
particles is given by

N - ff(r,p,t)d~rd~p (4)

The mean value of a function G(r,p) is

4GP - fG(r,p)f(r,pt)d~rd~p/N (5)

In much of the discussion below, we will be interested in local
mean values.

If O(p) denotes any function of momentum, the local mean
value of O(p) is given by

<4> - f~(p)f(r,p,t)dap/n (6)

where

n - ff(r,p,t)d3p (7)

We note that < > is a function of position and time through the
distribution function f(r,p,t).

To determine the variation of the distribution function with
time, we assume the presence of external and self-consistent



forces, as well as inter-particle forces. We consider time
intervals which are large, compared to the duration of a collision,
modifications of which have been considered by Ferry and
Barker s . We also assume that the time interval At is small
compared to the mean time interval between collision.

If no collisions occur during the time interval At, the
following transformation applies

r - r' - r + (p/m)At (8)

p - p, - p + FAt (9)

and

f(r,p,t)d3rd3p - f(r',p',t + At)d3r'd~p' (10)

Application of Louville's theorem concerning elements of volume
in phase space

d3rd3p - d3r'd3 p' (1i)

leads to the expansion

f(rpt) f(r,p,t) + 8af P + F + aftar m p JtO

+ "'" ( )(At)2  (12)

In examining transport in semiconductors we generally neglect
terms of order (At)1 with 1>1; the assumption being that
the distribution function does not change appreciably during the
interval At. According to Sommerfeld, this assumption is
compatible with considerable changes in f(r,p,t) within one mean
free path, because At<r, where r is the mean time between
collisions. This latter result is extremely important when
examining overshoot phenomena in devices. Thus within this
approximation, we obtain the collisionless Boltzmann transport
equation

af + 8f F F+!f- -0 (13)
ar mn ap -at

Collisions cause carriers to leave different elements of phase

5 -
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space with the following balance holding:

f(r,p,t)d pd3r - f(r',p',t' + At)d3p'd3 r'

- tj colld pd3 r, (14)

coil

from which we obtain the BTE with collisions,

O- p f F O f (8f) (15)

Or m Op at ratj coll

Among the various problems in semiconductor device physics, one
involves the proper formulation of the collision integral. We will
not concern ourselves with this during the following lectures.
Rather, we will borrow the necessary terms for establishing a
suitable submicron device physics.

Before proceeding to an actual description of submicron device
transport, which will necessarily involve solving a complicated set
of equations derived from the BTE, it is worthwhile presenting a
formal solution to the BTE within the framework of the relaxation
time approximation. This formal solution will highlight the
significant differences between the more standard approach to
examining device physics, and what is currently required.

Within the framework of the relaxation time approximation, the
collision integral takes the form

(a (Ifffo) (16)

in which we assume that r may be a function of energy. The
formal solution to the above equation basically involves
transforming the BTE, as a partial differential equation into an
ordinary differential equation

df f fo (17)
ds +

where "s" denotes a "characteristic" path variable. There is, of

course, considerable history associated with this, see e.g.,

Chambers 4, and Thornber'0 . Basically we consider the variables
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t(s), r(s) and p(s) such that

df Of dt~ Of dr f (8
ds t s Yrds Op ds

where we require

cit r !E.F(19)
ds -1 * ds m ds

For the simple case10 where F is taken to be independent of
t, r and p

C(s) - S-So + to

r(s) - p(-o)+r (20)
m

p(s) - F(s-so) + p0

Equation (18) has the formal solution

f(r(s),p(s),t(s)) f (r(so)sP(so),t(so),Jexp r s

+ ds'f0(r(s'),p(s'),t(s')] S ds'' (21)
SO+p s ) f f[p(s')J

When the following identification is made

soCt (s)- S (22)

The formal solution takes the form

(t'

f(r,pt) - f -r(t-t0 ) ip-F(t-to),toJ ep ft/rp-Ftt'

(23)

+o~ fct 01 - (t-t'),p-F(t-t'),t'J J tp
[fp-F(t-t')) Irp-~tt
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The physical significance of the above solution is contained in
the exponential contributions. Here the probability that an
electron initially at

p(24)

r - (t-to), p-F(t-to), to

m

has arrived at

r, p, t (25)

without scattering is Q

t dt'' (26)
exp - f,

tI T[p-F(t-t')]

t0
Thus, all transport is governed by non-local events. This is the
point we wish to emphasize. We now apply this to a very specific
and familiar problem.

We consider the situation where a system of carriers is
subjected to an applied external field and scattering centers, and C .
that the field represents a small departure from equilibrium:

f - fo + fl (27)

where fo represents an equilibrium time independent distribution
function. Under the typical small perturbation approximation, the
BTE becomes

af1  p Of1  f, ( Ofo  p 0f01 (28)
+ - - + - - F-" + m I 9

Or r O Cp a_

If we now solve this equation using :the method of charac-
teristics and concentrate only on the particular solutions

t t (29)t t t

flp - fdt'g[r - m(t-t'),t'] exp - f

to t p

we see an explicit dependence of the perturbed distribution
function on past history. Now while this will be important for

8-



submicron devices, there exists an entire class of devices whose "
spatial scales are longer than a mean free path and whose temporal
scales are longer than the mean time between collisions. On these
longer spaces and time dependent scales the spatial and temporal
variation of the integral in equation (29) is not important, and
can be taken out of the integral. Under these circumstances the
perturbed distribution function, for times longer than the mean
time between collisions, becomes

- p =+ afo (30)
fl~ =  ap m 8r N

Equation (30) is the typical starting point for most
semiconductor device transport descriptions. It requires for its
validity that only insignificant variations occur over a mean free
path, or over a mean time between collisions. It has nevertheless
been used for situations where there are strong field gradients
over very short distances, such as that within the vicinity of a
strongly asymmetrical PN junction. It may be expected that many of
the more common device calculations such as those associated with
bipolar sfti'n devices, MOS devices will require significant
scrutiny to determint if the more commonly used assumptions are
valid in design on a submicron scale.

The above description of transport as governed by the non-l'.:al
feature of the BTE will now be applied to examining submicron high
field transport. The requirements for this discussion have at
their basis, the need for a set of governing differential
equations. The equations that we use to describe submicron and
near micron transport are based upon the moments of the BTE.
Typically, these moments are often truncated after the first three
moments although in principle, an infinite number of moment
equations will provide an exact solution to the BTE. In the
discussion that follows we will apply the use of the displaced ..
Maxwellian distribution function to obtain a set of device
equations.

THE DISPLACED MAXWELLIAN DISTRIBUTION AND THE MOMENT EQUATIONS

As indicated in the above discussion, within the relaxation
time approximation, a momentum relaxation time may be defined,
where r(p) depends on energy through momentum. As discussed by
Keyes 1 , we can add a term to equation (16) which describes the Si.,
effects of electron-electron scattering by observing that if the
external fields and scattering mechanisms (exclusive of e-e
scattering) were suddenly removed, the e-e collisions would provide
a mechanism for transferring energy and momentum between different

9
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parts of the distribution function. This would bring f to some
other equilibrium function, fo*- fo* must be different from e
fo, since with fo the electrons have zero total momentum.
Since e-e collisions cannot alter the total electron momentum,
fo* must have the same total momentum as the nonequilibrium
distribution function f, at the time the field and scattering
centers were removed.

The determination of fo*, has been carried out by the methods
of statistical mechanics, and it has been shown that fo* is a
Boltzmann distribution moving with velocity v-p*/m, i.e.,

f0*(r,p,t) - ae-_p 'p*1 2 (31)

The prominence of the displaced Maxwellian lies in its successful
application to examining transport in III-V materials, particularly
gallium arsenide (GaAs). Its use in transport is primarily through
the moments of the BTE.

More generally, the moments of the BTE are obtained by
multiplying equation (15) by successive powers of p, i.e.,

(32)

( p) - p1 ,1 - 0,1,2, .3.

The result is

(33)

a fn a() a
-(n<0(>) + . <pO) - Fn-< - > + -(n<C(2)>)Coll

at ar d ap at coil,

where

a (af) (34)

at oll atJcoll d p

In the absence of collisions, an exact solution to the BTE can
be obtained by solving the infinite set of coupled equations. This-U
is not satisfactory, particularly when the effects of collisions
must by accounted for. The situation then calls for an estimate of
the distribution function. The often used assumption is that of a
displaced Maxwellian which cuts off the moment equations at the
number "3". The degree to which the distribution function is well
represented by the displaced Maxwellian has been examined by a
number of workers with the general conclusion that as far as bulk
transport is concerned, it is likely to be a reasonable assumption
at high carrier densities' 2. It is likely to be seriously

10



unrealistic to assume that the distribution function is spherical
in momentum space. Such a situation would tend to ignore important
thermal gradient effects as well as viscous effects, which are
known to appear in fluid flow and in plasma physics. The situation
is such that the displaced Maxwellian needs generalization.
One such approach, which we consider below was discussed by
Sommerfeldg. Here the distribution function of interest is
expressed as

(35)
f(r,p,t) - I +A... Ak a2 + Akem a3 + f*

8Pk 8 PkaP1 8 PkBP1 8 Pm

with the coefficients to be determined below. Additionally, the
following convention is assumed:

Ak A -
-  + Ay - + Az a (36)

8Pk 8px Spy 8pz

The constraints on this expansion are that the mean carrier density

n - ff(r,p,t)d~p - *ff(rpt)d p (37)

and that the mean momenta

n<p> - ff(r,p,t)pd~p - f4(r,p,t)pd3p (38)

which yields

<p> - p* (39)

It is further required that the mean, isotropic, thermal
kinetic pressure satisfy the following requirement

e - *fd(p-p).(pp,)fdp _ n (40)
3 m 3(pp)(pp)p - 2-ym

The identification of a suitable electron temperature model is
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through an assumed gas law, which is taken as

6- nkBT (41)

Thus,

1 (42)

2mkBT

And along with a suitable normalization that includes spin the
displaced Maxwellian is of the following form

. n -Ip-p*I2 (43)
fo -(2lrmkBT)s/2 exp 2mkT

The expansion coefficients, which identify the important
nonspherical contributions of the distribution function are
identified as follows: (1) the linear expansion coefficient is
zero; (2) the expansion coefficient Akl is identified as a stress
tensor; and (3) the expansion coefficient AkIm is associated with
a heat flux. The incorporation of these terms leads to the
following set of balance/moment equations, from which the numerical
simulation of the submicron devices is obtained. ,

Carrier Balance:

anr a i (44)
-- + -Vrnr - nrAr + nsAs

Momentum Balance:

a • (45)rp a i "• a a2 i •'
+ Vp -enr F j  xnrkBTr + Ar 8 Vr - PPJrI

at +x Vr r -en-F rx axiaxivr r

Energy Balance:

awr a 8 a Ie~vF a a
a- +  -v Wr -- enrvrF -VrkBTr + - r-r a-Tr

(46)

3 3
- nrkBTrr + pnSkBTSZS

-12-



Equations (44) through (46) are the governing equations used
below to discuss submicron transport. In these equations

Pr - nrPr " nrmrvr (47)

and

r- nr1(mrVrVr + -kBTr

the subscripts are used to emphasize the fact that we are
considering multi-valley species transport. The underlined terms
in these equations identify the stress term contributions (equation
(45)) and the thermal heat transport contribution (equation (46)).
Stress contributions in equation (46) have been ignored. The
coefficient in the momentum balance equation has dimensions of
viscosity, and this term behaves as a viscous contribution.

We examine the above equations in detail below. In order to do
this effectively, we will demonstrate how, for the case of the
dipole transit, the results obtained from these equations differ
from those obtained using the standard drift and diffusion

1.02 
_

S 0.8-

o 0.6-
S 0.4- "

0z 0.2

0 2 4 6 8 10

X(Pm)

FIGURE 2. Doping profile used for dipole simulations.
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FIGURE 3a. Electric field vs distance vs time, for a propagating
layer.

equations. To illustrate this, we consider a lOpm-long GaAs
element with a doping level of 5x10 15/cm3 and a doping notch
near the cathode boundary, as shown in figure 2. The device is
clamped at 4 volts (there is no load line). At this voltage level 0
domain oscillations occur. The oscillations are displayed in
figures 3 and 4. (We note: In this simulation Poisson's equation
is solved, along with the moment equations.)

1.4-

" 1.2 - / -.

_1._0 0

£0.8-

-. 0.6 f
0.4

0.2-

0
0 2 4 6 8 to

X(t m)

FIGURE 3b. Mobile carrier density at the time of figure 3a.
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Figures 3a through 3d display, respectively, the time dependent
behavior of electric field, total carrier density, gamma valley
carrier density and gamma valley velocity, for a propagating domain
(additional development is shown in figure 4). The domain is first
shown approximately halfway down the element at a time of 20.6ps;
and later at the anode at 38.8ps.

1.2 - N r

1.0-\ -
0.8-

o0.6-

z
0.2-

0o 4 6 8 I0

FIGURE 3c. r-valley carrier density at the time of figure 3c.

o 
6 -  

-

>
2-"

0 2 4 6 8 10

XCpm)

FIGURE 3d. r-valley carrier density at the time of figure 3a.
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The travelling domain has all the appearance of a classical
transit time oscillation. This, however, is deceptive because
immediately upstream from the domain where the field has decreased
to below the threshold for negative differential resistance (NDR),
and where semiconductor drift and diffusion would indicate that
relaxation to quiescent values of carrier density and near ambient
electron temperatures is complete, the moment equations indicate
otherwise. The moment equations show a substantial satellite valley
population even after the high field region has passed and only low
values of field remain. This significant relaxation effect was
first discussed by Rees13. Its numerical origin arises from the
first order spatial and temporal derivatives in the left hand side
of the moment equations (45) and (46). In the absence of these
terms, we, of course, recover the drift and diffusion equations.
The results of this calculation are significant and cannot be
described in any reasonable way by the drift and diffusion
concepts. Further differences arise here, because at these
moderate values of electric field, the satellite valleys carry only
a negligible amount of current. It is as though in an approximate
sense, once the carriers have been transferred to a satellite
valley, they are effectively out of the conduction process. (This
is clearly not the case at high bias levels). Thus is a real
sense, stable domain theory must be reexamined. Of interest here
is that at the peak field where the total carrier density is equal
to the background, i.e., N-No, the r valley population is less
than N/4, yet the velocity of these carriers, figure 3d, is greater
than twice the mean velocity, obtained from the relation

<v> - J/n 0e (49)

Nonequilibrium transport as depicted above is of more than
academic interest. Classical modeling of a lOpm-long device is
predicated on the notion that proximity effects are negligible.
Based upon the size of the high field domain as depicted in figure
3a, this would appear to be a valid assumption. On the other hand,
transport in the wake of these domains, at least for doping levels,
near 5xlO15/cm3 extends over a distance of nearly twice the
width of the domain, figures 3c and 4d. This factor of two should Qr
be cause of considerable concern when transit time devices below
5pm in active region length are designed.

PARAMETRIC DEPENDENCE OF THE MOMENT EQUATIONS

At this point, it is necessary to examine several parametric
aspects of the moments of the BTE. ;To facilitate this parametric
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study we introduce the following dimensionless primed variables:

n'- n/nref v' - v/vref

t,- t/tr.ef *j' - WWe

X'- x/xref t' - t/tref

with similar descriptions for other variables, and where

Xref - Vref tref

Additionally, * is obtained from a solution to Poisson's equation

a2# - (n-n0 ) (50)
Oxiaxi C

for a permittivity c, and we are observing the summation
convention. The moment equations and Poisson's equation in the
primed variables become

Carrier Balance:

- As' 1 fan' a 51

--- 4-- + 1,Ar' Af Lot' 8xj

Momentum Balance:

nrmrv2 -

(52)
f* 1 8nr r A2 VE a Ie a m

-n 7r 1c-j -c I I + --xnm~vr+ --- n~r r

a! ax!aXi. att r x

Energy Balance:

n T' n;T + dnlv'-

a a a a a iC~[2~ (53)
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Poisson's equation:

2 F - f(n'-N.)

ax! ax!

In the above
S i'i' 3 (55)

W - nrmrVr vr + 2bnrTr

The primed scattering rates in the above equations are, A'r-Ar-tref
with similar expressions for the other scattering rates. For
dimensional reasons, as well as to establish a dialogue concerning
the dissipative terms and the thermal conductivity contribution,
the viscosity has been expressed via the Maxwell relation

1 <V2(56)
- nref -ref <v>(

where <v> is a characteristic mean velocity and I an effective
mean free path. The thermal conductivity has been expressed in
terms of a Widemann-Franz relation

2aT4 (57)

S e2

where
nref e

2<r>

mref

and <r> - 1/<v>. In these terms the bold coefficients in

equations (51) through (54) are

etref Fref (58)
a - I

mreflr Vref 0

where

r ref (59) pFref x Xref 'u.
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kBTref (60)
mrVef

1 <v>2 (61)

3 Vrefxref

d a r (62)
Er

C

e - b2 X<> (63)
tref

e Xrefnref (64)
Fre f

The connection between these bold letter coefficients and
dimensionless hydrodynamic quantities is

b- - 3 (65)
M2 5

where M is the Mach number, and

1 (66)
Rey

where Rey is the Reynolds number. We consider the broad
consequences of the normalization.

The first point that should be noticed is that the effects of
the nonspherical distribution, as represented by thermal
conductivity and viscosity are likely to be more pronounced at the
shorter device lengths. The situation with regard to the thermal
conductivity is illustrated in figures 5 and 6.

In figure 5, we display the distribution of field and mobile
carrier density for a 2pm-long element with the indicated
structure and a high thermal conductivity consistent with Eq. (57)
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(141. We note the presence of highly nonuniform fields, figure 5b.
marginal electron transfer, figure 5c, and local r-valley carrier
velocities in excess of 5xlO cm/sec, figure 5d.

z
15 3 (a0 NO: 5X10/cm

0

U

1-

a 0.1

0 I 2
DISTANCE, (microns)

FIGURE 5a. Doping profile for high thermal conductivity calculations.

t2.5 b

10.0

,,J

US 2.5
50

o 2.5
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FIGURE 5b. Field profile for high thermal conductivity calculations.
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FIGURE 5c. Carrier distribution for high thermal conductivity
calculations.
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FIGURE 6a. Field profiles for a lower thermal conductivity of.

Figure 6 is for a lower value of the thermal conductivity
[14]. A decrease in the thermal conductivity by an order of

magnitude results in an expected increase in the overall carrier
temperature and an increase in the number of carriers that have
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transferred to subsidiary valleys, figure 6b. The results suggest

that further study is required with respect to the importance of
the thermal conductivity with regard to device design.

1.5
zo_ (b)
I-0 W

1.0 --
a.
. 5

0t

0.5

0 2
0 I 2

DISTANCE, (microns)

FIGURE 6b. Free carrier density for a low thermal conductivity.

The situation with regard to the viscous contribution is
considered next. First, viscous contributions are basically
dissipative. This is displayed in figures 7a and 7b, where for the
structure of figure 2 and a bias level of two volts, the steady

1.2-
0 RE 500

0-o 0.8. R:5

0.4-

0| .2.4.6.S 1.0X/OlJm

FIGURE 7a. Dependence of charge density on Reynolds number.
(4 - 2 volts)
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FIGURE 7b. Dependence of r-valley velocity on Reynolds number.
(f - 2 volts).

state carrier density and r valley velocity are sketched for two
different values of the Reynolds number - the viscous contributions
are different. It is seen from these figures that the smaller the
Reynolds number, the smoother the carrier density and velocity
profiles. This of course, is expected. The smooth profile,
however, tends to result in a larger variation in electric field,
as seen from figure 7c as well as from Poisson's equation. Thus,
simple predictions about the effect of viscosity on the detailed
performance of a device cannot yet be made. More study is clearly
in order. We will come back to these equations and their scaling
implications later. Meanwhile, we consider the detailed transient
behavior of submicron devices.

SPATIALLY INDEPENDENT TRANSIENT TRANSPORT

We have emphasized in these lectures that one of the more
important features of transient micron and submicron transport in
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FIGURE 7c. As in Figure 7a, but for electric field distribution.0

semiconductors is the non-local contribution. Thus, events at time
t depend on an earlier time history, and transient phenomena at a =
point x depend on disturbances at a point x' and on the propagation
characteristics from x' to x. In addition, as dimensions shrink
and proximity effects become pronounced, reflections and, hence,
time dependent contributions from the downstream, as well as the
upstream boundary comes into importance. While these effects are
implicit in the discussion of dipole transport through solution to

the moments of the Boltzmann transport equation, a fuller
discussion is given below. We begin with a discussion of,.--
nonequilibrium high field transient effects. -

Transient nonequilibrium transport, or velocity overshoot as we
have come to know it, is prominently identified with the studies of
Ruth's , although historically one of the earliest contributions
is due to Butcher et al l $. The phenomena, as we begin to
understand it better, arises from at least two effects: (1) the
incorporation of acceleration in the governing equations, and (2)
energy dependent relaxation rates. Additionally, in the 111-V ---
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there is also intervalley transfer. Let us first identify the
overshoot and then go through a description of its origin.

Figure 8 is a plot of velocity versus time for a GaAs uniform
field device subject to a sudden change in electric field. In this
curve the long time asymptotic value is that appropriate to steady
state values. The interest in this curve lies in it's short time
transient which has a peak velocity in excess of it's steady state
value. In the case of Si, the peak velocities are only marginally
higher than their steady state values, and nothing truly dramatic
occurs. The situation as represented by figure 8 is for GaAs.
Indeed, it is this difference that is, in good part, responsible
for the high activity in the III-V compounds.

6

I ,

| I

00 2 4 8 10

T/(.28 p) .

FIGURE 8. Veloci.ty transient for GaAs, from the moment equations. 'i
The applied field is 9.7kv/cm.

While much of the early work on velocity overshoot was obtained

within~ the framework of Monte Carlo calculation, the discussion
below will be through application of the Moment/Balance equations.

These have been discussed in fairly general terms earlier. For

spatially uniform fields these equations reduce to a set of simpler

coupled ordinary differential equations, which will be used toI
identify significant nonequilibrium phenomena. For uniform fields,
the continuity equation, as well as that for momentum and energy

4 7.



0

balance reduce to:

anr  (67)

a t-- - nrAr + nsAs

8Pr (68)

at enrF - PrIr

aWr 3 3 (69)
at- - enrvrF - nrkBTrF r + "n s k BT s

The first equation states that the time rate of decrease of the
population of the "roth conduction (or valence) band is
proportional to the rate at which the particles leave, less the
rate at which they are replenished. The second equation is, of
course, Newton's law with a driving force, the electric field, and
dissipative term (momentum relaxation). The third equation
describes energy balance. We note that with regard to the
acceleration equation, nothing other than the driving term
introduces gain. With regard to the energy balance equations, the
carriers gain energy from the field when

sgnvi - -sgnF (70)

and return energy when the signs are the same. There is also the
possibility of either an energy loss through intravalley
electron-phonon interaction and energy gain or loss through
intervalley transfer.

For uniform fields the entire description of the transient
transport through the semiconductor is governed by a balance
between the driving field and the scattering rates. These rates
identify all of the relevant physics associated with
electron-impurity scattering, electron-hole and hole-impurity
scattering, electron-phonon and hole-phonon scattering, etc. The
scattering rates fold-in the matrix elements and are obtained
through several layers of approximation. One approximation is the
use of the BTE for situations where inelastic scattering occurs.
Another approximation is associated with the fact that we do not
generally obtain matrix elements from first principle arguments,
and that there does not exist a set of corresponding experiments
that allow us to confidently use the results of these matrix
elements. Generally, the strength of a specific scattering matrix
element is identified by a coupling coefficient, e.g., the 0
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deformation potential, and a scattering rate is computed. Similar
procedures are applied to different scattering mechanisms. The
resulting scattering rates are then summed. The assigned
scattering rates are deemed satisfactory when the calculated steady
state field-dependent velocity curve agrees with experiment. The
difficulty with this approach is that (1) it is not unique, a
variety of different coefficients are likely to give similar
results, (2) steady field dependent velocity curves are not
obtained experimentally under steady state conditions, (3)
consistency does not exist between alternative methods of
calculation. Here Monte Carlo and displaced taxwellian
calculations yield somewhat different results (although they are
qualitatively similar). The above statements are not meant to
suggest that all transport studies should be delayed until all of

TABLE 3. CaAs Parameters Used in Calculations

Parameter r L X Common

Number of equivalent valleys 1 4 3
Effective mass (me) 0.063 0.222 0.58
[-L separation (eV) 0.33 0.522

Polar optical scattering
Static dielectric constant 12.90
High-frequency dielectric constant 10.92
LO phonon (eV) 0.0354

T-L, X scattering
L-X scattering
Coupling constant (eV/cm) 0.800xIO9 0.200xlO9
Phonon energy (eV) 0.10Ox10 9

r-L, X 0.0278 0.0299
L-X 0.0293

L-L, X-X scattering
Coupling constant (eV/cm) 2.0x10 9  2 .0x109
Phonon energy (eV) 0.0299 0.0290

Acoustic scattering
Deformation potential (eV) 7.0 9.2 9.2

Nonpolar scattering (L)
Coupling constant (eV/cm) 0.300x109  0.300x10 9

Phonon energy (eV) 0.0343 0.0343
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the above problems are overcome. They are mentioned to indicate
that caution is in order and that an over reliance on available
parameters for describing scattering rates is not acceptable.

As indicated earlier, all scattering rates will be obtained
within the framework of the displaced Haxwellian. The integrals as
used in the discussion below are summarized in Table 3.We note that
the scattering matrix elements for electron-phonon interaction were
applied, within the early fifties to calculate the scattering rates
via the displaced Maxwellian, by Froelich and coworkers' 2 . They
have since been repeated by a variety of other workers, in some
cases with important generalizations. One of the earliest
applications of the moment equation and the above scattering
integrals was to the semiconductor GaAs. These calculations were
performed under the assumption of transport within two portions of
the GaAs conduction band, one at r, and the second at X. The
parameters for this calculation are displayed in Table 416

TABLE 4. GaAs Parameters Used in Calculations 0

Parameter r X Common

Number of equivalent valleys 1 3

Effective mass (me) 0.067 0.40

F-X separation (eV) 0.36

Polar optical scattering
Static dielectric constant 12.53
High-frequency dielectric constant 10.82
LO phonon (eV) 0.0354

r-X scattering
Coupling constant (eV/cm) 0.621
Phonon energy (eV) 0.0300

X-X scattering
Coupling constant (eV/cm) 1.064
Phonon energy (eV) 0.0300

Acoustic scattering
Deformation potential (eV) 7.0 7.0
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In the late seventies experimental evidence pointed to the L -.
valley as the lowest satellite valley, but with X sufficiently
close to L to provide enough coupling at high fields. Thus GaAs
was regarded as a three-level transfer semiconductor. Transient
and steady state calculations with three levels of transfer have
been considered by many workers. Results within the framework of
the displaced Maxwellian will be illustrated below. Additionally,
several two-level spatially dependent electron transfer
calculations, with r-L ordering, using the parameters of Table 5.

For three-level transfer with the parameters of Table 3, the
scattering integrals are shown in figure 9, where scattering rates
are plotted as a function of electron temperature. For example,

TABLE 5. GaAs Parameters Used in Calculations

Parameter r L Common

Number of equivalent valleys 1 4

Effective mass (me) 0.067 0.222

r-L separation (eV) 0.33

Polar optical scattering
Static dielectric constant 12.90
High-frequency dielectric constant 10.92
LO phonon (eV) 0.0354

r-L scattering
Coupling constant (eV/cm) 0.800x109

Phonon energy (eV) 0.0278

L-L scattering
Coupling constant (eV/cm) 2.0x10'
Phonon energy (eV) 0.0354

Acoustic scattering
Deformation potential (eV) 7.0 9.2

Nonpolar scattering (L)
Coupling constant (eV/cm) 0.300xlO 9

Phonon energy (eV) 0.0343
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FIGURE 9. Three-level (a) carrier scattering rates for use in0

equation (44); and (b) r' valley momentum scattering
rates for use in equation (45).
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FIGURE 9. Three-level (c) L valley and (d) X valley momentum

scattering rates, for use in equation 45.
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FIGURE 9. Three-level (e) r valley energy scattering, and, f) L
valley energy scattering, for use in equation (46).
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FIGURE 9. Three-level (g) X valley energy and (h) return energy
scattering for use in equation (46).
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figure 9a displays the carrier density scattering rates. Note chat
the ratio, at Te-300K, of the L carrier scattering to rL
scattering is governed by the equilibrium distribution of the r and
L valley carriers, as given by equation 71. The scattering
contributions to the F valley momenta are shown in figure 9b. At
low energies scattering is dominated by the LO phonon, whereas at
high energies by the intervalley phonon. The scattering
contributions to the L and X valleys momentum are shown in figures 9c
and 9d, respectively. The dominant contribution is equivalent
intervalley scattering. The r, L and X valley energy scattering
rates are shown in figures 9e, 9f, and 9g, respectively. Note the
increased scattering rate at high energies for the F valley
carriers, and the decreased scattering rate for the X-valley
carriers. The energy loss for the r valley carriers is dominated 0
by transfer to valleys with higher density of states. The L valley
energy loss is intermediate between r and X. The return energy
scattering is shown in figure 9i.

Note that there are 42 scattering integrals, exclusive of ionized
impurity scattering, to contend with. After summing, there are 18 0
scattering rates of interest. The steady state calculation arising
from these integrals is shown in figures 10 and 11.

Figure 10 displays the field dependent mean velocity for L-L-X
ordering. Figure lla is the distribution of carriers as a function
of applied field. The electric field versus F-valley electron -
temperature is displayed in figure lib. In figure llc and lid, we
sketch (e/mII)F for select r and L valley integrals, as well as
the mean velocity for r and L-valley electrons. Note that the F
valley velocity, whose contributions are dominated by LO phonons at
low energies, and intervalley phonons at high energies, is at least
an order of magnitude greater than the L-valley velocity. 0

2.
E
2

>0.8

0.6

1 2 4 6 8 10 20 40 60 80100
FIELD (kv/cm)

FIGURE 10. Steady state velocity vs field for F-L-X ordering in
GaAs.
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of figure 10.
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There are several points to be made about these integrals. The
first is that the energy scattering rates, particularly those
associated with the central valley are several orders of magnitude
less than those of the corresponding momentum scattering rates.
Thus, while initially in an applied field the momentum increase
without any significant relaxation, subsequent momentum relaxation
is energy dependent and dominated by the longer energy relaxation
times. Prior to significant energy relaxation, the momentum and
carrier density scattering rates are being altered by the
increasing electron temperature as well as the increasing carrier
velocity. Thus in this case of momentum balance, there is a
decrease in carrier momentum, and in the case of carrier balance,
there is a decrease in central valley population. The consequences
of this is a net decrease in carrier velocity. These results are
born out numerically and are displayed in figure 12 for carriers

1.2
(0)

1.0 - - -
OG N•

0.6

-NZ

2 4 6 6 10
T/(.28 p,)

6-.(b)

4

0 2 4 6 a 0

T/(.2 ps)

FIGURE 12. Transient uniform field response, <F> - 9.7Kv/cm p.

with a zero initial velocity, an initial electron temperature in
the central and satellite valley equal to the ambient temperature,
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and an initial equilibrium distribution of carriers:

3 (71)

nr - exp6r/kT
nL t"'L

(72)

nr (mr xprX/kT

Note: There is overshoot in the r-valley carrier velocity,
as well as the mean velocity.

As the discussion above indicates, the initial transients are
dependent in a detailed way on the way the energy relaxes. Thus
the details of transient transport are likely to depend
significantly on at least the following items: (1) rise time of 0
the external source, (2) initial conditions, (3) boundary
conditions, and (4) device structure. The first two items are taken
up next.

The study of the rise time is basically a matter of matching
time constants. For example, if the time it takes electrons to C
reach steady state equilibrium is of the order of one picosecond,
then rise times of the order of one picosecond or less will
introduce strong nonequilibrium effects. These effects will
decrease as the rise time increases. This is illustrated in figure
13 where we plot peak velocity versus rise time for a device
subject to a specific value of bias field. -

The significance of initial conditions for uniform field
calculations is that it is thought to identify the properties of
the entrance contact. In the strictest sense the properties of the
entrance contact are determined by a set of boundary conditions,
with the initial conditions on the boundary playing a less
prominent role. Calculations with both will be illustrated below
with more emphasis on the contact as a boundary conditions.

The first set of calculations is for uniform field and GaAs
with three level transfer. The bias field for the case is 17.6
kv/cm and the initial carrier velocity is zero, figure 14, dashed
line. Strong velocity overshoot is apparent from this calculation,
and there is overshoot in the temperature. (Please note: that for
this calculation capacitive effects have not been included. They
are incorporated implicitly in the spatially dependent transient
calculations). The situation when the entrance carrier velocity
and temperature are varied is indicated by the solid curves of
figure 14.
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FIGURE 13. Velocity vs rise time.
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FIGURE 14. (a) Transient response as a function of initial
velocity and temperature. (F-17.6kv/cm). Load line
included; (b) As in 14a, but for P-valley temperature.
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FIGURE 1. As in 14a. but for velocity vs distance.

Several things are apparent from these results. First, for an

initial entrance temperature equal to the ambient temperature, an 
0)

increase in the entrance velocity results in an increase in the

peak velocity and the rate at which electron temperature

increases. As a consequence of the latter, the momentum and [

density relaxation rates icrease. Thus, the time to steady state

is reduced. We can project that a tradeoff exists for an optimum
set of initial conditions in which an electron will traverse a 

0|

given distance in the shortest time interval.

A very similar set of results was presented by lafrate et

al., IT using Monte Carlo techniques. There are some very

important differences in the assumptions associated with the Monte

Carlo technique and the displaced Maxwellian, particularly with

regard to the assumption concerning the distribution of the

entering carriers. Nevertheless, the qualitative features of the

two results are similar. The Monte Carlo studies are displayed in

figures 16 and 17. Note, the F-20 curve of figure 16 is

qualitatively similar to that of the v(O)-7.5 curve of figure

15, which is the same as figure 14a but with distance as the "

abscissa. Figure 17 indicates that the rate of carrier velocity

decrease increases with increasing energy. Again, in qualitative

agreement with figure 15a.

INFLUENCE OF SPATIAL NONUNIFORMITIES ON TRANSIENT TRANSPORT

The above discussion was concerned with uniform fields, a

situation that is not expected to occur. Indeed if it did occur,

we would necessarily conclude that submicron two-terminal GaAs

devices would possess a region of dc negative differential

conductivity. Further, the implication of the spatially uniform

velocity overshoot calculations is that they are representative of
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measured current transients profiles. As discussed below, this is
not likely to be the case.

To illustrate the role of spatial nonuniformities on transient
transport, a limited number of numerical calculations involving
space and time dependent solutions to the first three moments of
the BTE. These calculations have been performed as a function of
device length, boundary conditions, doping level and material
variations. None of these calculations display a region of dc
NDC. Indeed, all calculations show considerable departure from the
familiar homogeneous uniform field studies. All calculations are
performed using a model for GaAs that contains two levels of
transfer, and assumes a conductivity effective mass equal to the
density of state effective mass. In addition, the boundary 0
conditions are chosen to represent the effects of injecting
contacts. It is possible to argue against the use of a specific
set of boundary conditions to represent the properties of the
physical contact. These arguments would, however, tend to remove
us from the essential features of the problem, which are to

2.0-

10.
>

2 4 6 9 10 20 40 60 80
FIELD (kV/cm)

FIGURE 18a. Field dependent velocity for r-L two-level transfer. 0
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FIGURE 18b. As in 18a but for vr.
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determine the role of the boundary and of nonuniform space charge
effects on device performance. The parameters used for the
calculations are displayed in Table 5. For reference, the steady
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state field dependent transport results are displayed in figure 18.

The first set of calculations shown is for a uniform field.
These calculations are performed for reference only. For the
uniform field calculations, the device is in series with a load
resistor and an inductor. The device is also in parallel with a
capacitor. For the first set of calculations, the inductor is set
to zero, and the load resistor is set to 0.01Ro, where RO is
the low field resistance of the element. The capacitor was set to
Co - rR/Ro, where rR is the dielectric relaxation time
for the semiconductor element. For the space charge dominated
device, the device was subjected to a specified time dependent
voltage source and all capacitive effects were included
self-consistently through application of the continuity equation.
(An earlier study incorporated the load resistor). The two space
charge dependent calculations were for two terminal devices, one
with an active region length of 0.25pm, the second with a device
length of 1.Opm. Both had doping levels of 5xl01 8 /cm3 and
were subject to injecting boundary. Further in these calculations,
ionized impurity scattering was ignored.

The uniform field calculations were performed: (1) at a bias
level of 6kv/cm, and (2) at 10kv/cm. The familiar overshoot
results discussed earlier are displayed here in figure 19.

C

6

4

\ -- 6kV/M

2o .. .......... ..............

0 ,,

0 2 4 6 8 10
t /.Slp$ -

FIGURE 19. Transient transport uniform field for two-level r-L
transport.
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The situation with regard to the space charge dependent
calculations with injecting boundary conditions is shown in the

next set of figures. Figure 20 displays the current time

transients for the 0.25 and 1.0pm devices at two different bias

levels. The use of current rather than velocity is significant
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here - it is current that is conserved - not velocity. In one
dimension the total current is independent of position. Note the lo
significant result that at the higher bias levels the steady
current level increases - a result opposite to that for the
uniform field calculations.

The steady state distribution of electric field in these
devices is nonuniform and an understanding of them is crucial for
understanding device operation. The field profiles for the
0.25pm device are displayed in figures 21a and 22a, and show a

- (a) T300K

3.a-

.-
E

z

I J
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I I I I
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0 0.25 0.50 0.75 1 0

zI. 25/Lm

FIGURE 21. (a) Electric field vs distance for 0.25pm device with
injecting cathode and an applied bias of 0.1 volts;
(b) N-total and Nr carrier density.

characteristic increase in field as the downstream boundary is

approached. In both cases the initial increase from the cathode is
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* a consequence of the injecting boundary condition. In the 0.25pm
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FIGURE 21c. r-valley velocity distribution.
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FIGURE 21d. r-valley temperature distribution.
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FIGURE 22(a). Electric field vs distance for O.25pum device withAR
injecting cathode and a bias of 0.25 volts.
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FIGURE 22(b). Total carrier density vs distance.
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FIGURE 22(c). r-valley density vs distance.
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FIGURE 22 (d). [-valley velocity vs distance.
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FIGURE 22(e). r-valley temperature. -

structure and a bias of O.lv the anode field is flat, while that
for the 0.25v case the field continues to increase. There is
little electron transfer at the lower bias level, as indicated in -

figure 21b, but a substantial number for the higher bias level, as
indicated in figures 22b and 22c. It is anticipated that
increasing the applied bias will cause an increase in the numbers
of carriers scattered to the satellite valleys where the carrier
velocity is reduced. Experimentally, however, in the absence of
device heating an increase in current density with an increase bias

field is expected, at least under dc conditions. The most likely
reason for this to occur is through net carrier accumulation within
the region of electron transfer. This, indeed, is what is
occurring and is seen in figure 22b. We note that the decreasing
carrier concentration for the short device and low bias requires,
through current continuity an increase in carrier velocity, as seen
in figure 21c. Further, the f-valley electron temperature
increases only to 600°K, not enough to result in carrier transfer.

The increasing electric field at high bias levels in the . ,
vicinity of the anode is a feature of materials with a region of
negative differential mobility and does not appear to be dependent
upon the specific boundary conditions applied. It was predicted by e
Shockley"8 , and its consequences have been detected
experimentally 9 . We note that, as in the low bias calculation,

the f-valley carrier velocity increases substantially toward the ii
anode (figure 22d) and the electron temperature exceeds 900K
(figure 22e), forcing electron transfer.
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FIGURE 23. Electric field vs distance of 1pm device with an

injecting cathode and a bias of 1.0 v.
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FIGURE 24(a). Total carrier density corresponding to the field
distribution; (b) r-valley carrier density.
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The features of the 0 .2 5pm calculation are exaggerated for

the longer 1.0i calculation of figure 23. Note the high anode
field near 30kv/cm, and the substantial electron transfer (figures

24a and b). The r-valley carrier velocity for this case is
larger than that of the 0 .25pm case as required by current
continuity.

(c)
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0 4-0

X(0m| 0

(d)
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0
0
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oo
0- i

0 0.25 0.50 0.75 1.0

FIGURE 24(c,d). As in figure 24 a, b, but for r-valley carrier
velocity and electron temperature.

It is important to reiterate the significance of these
results. It was originally anticipated that the uniform field
calculations and the consequent predictions were relevant to high

frequency and, therefore, submicron devices. With regard to the
uniform field calculations, it must be noted that these are
applicable to devices of any length, as long as the field is
uniform. With regard to submicron devices with nonuniform fields,
the time dependent uniform field results are not at all adequate.
They do not predict the peak or asymptotic currents correctly.
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The numerical results are somewhat model dependent. Certainly
the details are dependent upon boundary conditions, device
structure, length, doping, and etc. But there are several
interesting features that should be highlighted as they appear in a
number of different studies. The first point to be noted is that
the carriers are entering the device at high velocities of
1.5xl0 7 cm/sec. Within the device and near the downstream
boundary, as indicated above, a large fraction of the carriers
transfer to the satellite valley. These low mobility carriers
contribute only an insignificant amount to the net current through
the device. The high current drive is a consequence of the high
level of injection throughout the active region of the device. (In
longer "active region" devices, the advantages of charge injection
are reduced and intervalley transfer leads to lower current levels).

The importance of space charge injection is not limited to the
structure just discussed. An extremely interesting device that
appears to exhibit many of the properties of the 0.25pm device is
a one dimensional version of the space charge injection field
effect transistor (Constant et a120 ). The geometry of this
structure is shown in figure 25, and the space charge dependent

N+  N N +

17 15 1710 10 i

0.7511M

FIGURE 25. Structure for simulation of submicron space charge
limited transport.

profiles for a one-volt bias across the device are displayed in

figures 26a through 26c.

For the injection device depicted in figures 25c and 26, the
space charge dependent profiles display considerable similarity to
the results of the space charge limited diode. There is a
potential minimum some distance away from the physical cathode,
resulting in a retarding electric field. The consequence of this
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FIGURE 26. (a) Field and potential vs distance for the structure
of figure 25; (b) carrier density; (c) carrier i-,

velocity and electron temperature.

retarding field is that the electrons are cooled as they approach
the minimum 21 . (Note: we are not accurately representing the
scattering at temperatures below the ambient. The results are
therefore only qualitatively significant). The carriers are d
entering the active region at relatively high values of velocity
and are exiting at even higher values. The field is nonuniform
with high values near the downstream contact. There is
considerable transfer which is compensated by an excess of injected
carriers.

ASSESSING THE UPPER FREQUENCY LIMIT OF SMALL SIGNAL OPERATION

The next item of interest in connection with any of these
devices, and certainly with regard to assessing material properties
is the upper frequency limit of operation. The determination of
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the upper frequency limit depends on the structure of interest and S
the mode of operation. If we confine ourselves to the transferred
electron effect, then there are at least five items of interest:
(1) large versus small signal operation, (2) device length, (3)
boundary conditions, (4) doping variations, and (5) circuit. There
has been only a limited amount of work done with regard to the last
four items and here only with long devices. We will consider these
later. At this point, we will confine our activity to large and
small signal operation.

Consider first small signal high frequency operation, within the
context of the following type of "experiment" (see figure 27). We
assume a device is in a quiescent state at a voltage level to
and a current level Io . The device is then subjected to a sudden
perturbation in the form of a square wave pulse. The questions to
be asked are: what is the output response, and what is the upper
frequency limit for small signal negative conductance?

DEVICE P

FIGURE 27. Small signal configuration.

Under uniform field conditions, NDR occurs when carriers
transfer to the low mobility satellite valleys. Since the number
of electrons transferring to subsidiary values requires a finite
time to be completed, the extent of negative conductance is
frequency dependent. This frequency dependence is complicated by
the presence of nonuniform fields which completely eliminates dc
NDR. Indeed for nonuniform fields, the most significant
contribution to small signal NDR is the non-local transit time
effect. (Note: this does not preclude the possibility of a
transient "uniform-field"-like response to an external source). We
first examine the way a material like GaAs responds to such an
external stimulus. Consider figure 28, which displays the voltage
pulse and a qualitative sketch of a current response (based on the
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overshoot calculations). The current response includes an apparent
overshoot and a relaxation to a current level below that of the
unperturbed system. We are clearly considering uniform fields
here. There could, additionally, be some nonequilibrium undershoot
as represented by the dashed lines. When the pulse is turned off
the system returns to its steady state value. Hereto, there may be
some residual nonequilibrium overshoot.

8I

FIGURE 28. Small signal current response.

With reference to figure 28, the product 6M61 represents the
time rate of change of energy across the device. When it is
positive, the system is lossy, when it is negative, the device is
returning power. For uniform fields where an increase in the bias
field results in a decrease in current, there is necessarily a
region of small signal frequency dependent NDR22 . The frequency
dependence is due to several sources. First, there is over and
undershoot prior to steady state (dashed lines in figure 28).
Second, the extent of the frequency dependence is sensitive to the
time duration of the disturbance. For example, if the excitation
is turned off before the system had a chance to reach the NDR
region, no power would be delivered to the load. Thus, the
limitation to small signal negative resistance is principally at
high frequencies.

The small signal NDR is dependent upon the scattering rates.
These in turn are dependent upon the bias field. Thus, the
magnitude and extent of the small signal NDR is bias dependent.
Specifically, at sufficiently high bias levels a substantial amount
of transfer occurs and the small signal NDR will decrease. There

56



R WiLumz~u _u " um U M MU M "

p
should be an optimum bias level for small signal NDR, and this is

displayed in figure 29a. The data summarized in 29a is obtained
from dispersion relationships. The field dependence of the real
part of the dispersion, yields the frequency dependent mobility, as
is shown in figure 29b. Here, as the quiescent field increases,
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FIGURE 29a. Maximum frequency for small-signal oscillations (from
uniform field KBTE).
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FIGURE 30. Small signal impedence as a function of normalized
frequency from the drift and diffusion equationsI9.

the magnitude of the small signal mobility decreases, while the
maximum frequency increases.

It is important to note that the dispersion relations, obtained
from the drift and diffusion equation, will not cross over to
positive values at high frequencies. The absence of this cross
over is shown in figure 30c 19 .

The above small signal discussion has been for uniform fields.
The question, of course, is what happens for nonuniform fields.
For nonuniform fields and structures several microns in length,
transit time contributions introduce significant phase delays. For 0
submicron devices, the extent to which these transit time delays
enter is not yet clear. What is apparent, however, is that if
Shockley's positive conductance theorem is valid for submicron
devices, then a residual pre-relaxation under- or overshoot is
necessary. This was not apparent in the 0.25pm calculation of
figure 20a, but it was present in the l.Opm result (figure 20b).

THE UPPER FREQUENCY LIMIT OF SELF-EXCITED OSCILLATIONS I
The above discussion was concerned with small signal NDR. The

other extremes are the large signal oscillations, often identified
as relaxation oscillations. For transferred electron devices,
these oscillations received prominent attention when LSA devices
were being studied. These self-excited oscillations require the
presence of an inductor in the circuit. When dealing with
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transferred electron devices, they are a fundamental phenomena to
be dealt with, and the question, of course, is how to describe them.

The simplest description of the self-excited oscillator for
uniform fields is through the coupled circuit equations (see figure
31)

dI (73)*B - IR + L-:t + @(3

I - Ic + CM (74)
dt

where # is the voltage across the device and Ic is the
conduction current and is equal to Ic - N ev. These equations
can, in turn, be represented by a second order ordinary
differential equation:

B - _(1OR Zo dlc RoCt d- dt

(75)
Zo 2 t, - - I

For the situation where the relation between Ic and
includes that of a region of NDR, we have essentially a generic
form of a Van der Pol oscillator. Typically the NDR region
displays no hysterisis and is not frequency dependent. The
normalization identifies the quantity Zo/Ro as the strength of
the nonlinear element. Its effect on long devices is that it will
determine when space charge contributions will dominate an
oscillation.

The relevance of the dynamic properties of high frequency
devices is that the origin of the self-excited oscillation lies in
the presence of a region of NDR. Thus the upper frequency limit of
oscillation is essentially defined by the intervalley transfer
rates. Further, because the scattering rates are sampled
differently from that of the small signal oscillation, the upper
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frequency limit of the two will be different. Figure 31 summarizes
the dependence of the upper frequency limit of the self-excited
oscillations. Note the significantly lower maximum frequencies.

200

SOO

150

50
0 16.8 33.6 50.4

kV/cm 0

FIGURE 31. Maximum frequency for self-excited oscillations.

Figures 32a-32c illustrate a dynamic large signal self-excited
oscillation at 78GHz as computed from the moments of the Boltzmann

0.25- -.

0.00

-0.25 -

F/Fo

FIGURE 32a. Velocity vs field lissajous for 78 GHz osc. i-601
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transport equation. Figure 31a displays the velocity, not the S
magnitude of the velocity, as computed self-consistently from the
!BTE and the circuit equation. Note that the velocity field figure
arises from eliminating time between the velocity-time profile and
the field-time profile. In figure 32a, there is an initial very
high velocity arising from the initial overshoot transient. Under
steady state, the time dependent voltage, or field, as displayed in
figure 32b sustains a softer rise time and overshoot effects are
reduced. Note the hysterisis in velocity arises because the
response of the carrier density, velocity and temperature are not
instantaneous. In the case of the carrier density, there is a
delay following a field increase, before the electrons transfer to
the satellite valley, as shown in figure 32c, and a delay following

10-

0A

2

0-

-2-t-

0 50 1OO 1S0 200

T/T (-050s)_

FIGURE 32b. Field vs time for the 78 GHz oscillation.

2.5- 10-

N - Vr 0.0 Tr,

0 -2.5- 0

0 10 0 10 0 10

F F F

FIGURE 32c. Dynamic lissajous figures for r-valley carrier
density, velocity and temperature.
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a field decrease, before the electrons return to the r-valley.
At higher frequencies, obtained by reducing the inductance, the
finite intervalley relaxation times prevent sustained oscillations.

The question, of course, is how are space charge dependent
effects going to enter the picture. For submicron devices, this
has not yet been determined. Let us, however, go through some
discussion to see if we cannot pick up a thread of prediction. To
do this we rely on some analysis done earlier. Basically, we are
concerned with three time constants: (1) an intervalley relaxation
time, (2) a circuit frequency, (3) the propagation time of a space
charge wave. In the case of low frequency operation, space charge
control requires that the circuit frequency be sufficiently high to
suppress residual space charge nonuniformities. (This will also
require a sufficiently high Zo/Ro circuit. See Eq. 75) The
above arguments are also required for short submicron length
devices. But if we look at the transit time associated with the
smaller devices, particularly the 0.25pm device, the transit time
is of the order of the LO phonon scattering time. It is
unrealistic to suggest self-excited oscillations on this time scale
for GaAs devices.

In addition to both the self-excited oscillation and the small
signal oscillation, there is the driven oscillator, where a
sinusoidal driving potential is imposed on the device as shown in
figure 33. The dynamic situation associated with the above figure 0

- DEVICE '

FIGURE 33. Driven oscillator configuration.

is as follows. When the power is delivered to the
device-plus-load, power is dissipated to the load in an amount
equal to

R<I2> (76)

where the brackets denote a time average over one period. The

power delivered to the device is

< > (77)
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When the above quantity is positive, the device is lossy.
Interest in the transferred electron device arises from the fact
that Eq. (77) can be negative and the device can deliver power to
the load. The situation is clearly limited by the frequency of
operation, and one particular set of results is displayed in figure
34. Which shows a Lissajous between velocity and applied field.

0.

-0.2

-0.4
0

> 
_ .

-0.8

1.0 ,, ,--

0 1.5 2.0 0 1.5 2.0

F /F

FIGURE 34. Velocity vs driving field; positive slope denotes gain,
negative slope denotes loss.

When the net slope of the major axis is positive power is
delivered by device. When the net slope is negative, power is
dissipated. Both results are consistent with the phenomena of
negative differential mobility. For nonuniform fields the question 0
again arises as to how high in frequency we can go and still obtain
amplification of the imposed signal. The situation is likely to be
similar to that obtained from the small signal and large signal
self-excited oscillation studies, and to depend critically upon
device design. Whil. the upper frequency limit for a particular
device has not yet been obtained, steps have already been taken to
couple solutions to the BTE with a driving sinusoidal source to
design transferred electron amplifiers. These transferred electron
amplifiers were designed using indium phosphide (InP)2 3.
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THREE-TERMINAL DEVICES: TWO-DIMENSIONAL DRIFT AND DIFFUSION STUDIES

The situation with three terminal elements is somewhat
different. In this case, unless we specifically are interested in
active oscillations as will occur in transferred electron logic
elements, or with switching devices the relevant figures of merit
are associated with the frequency at which a device amplifies the
power of an incoming signal. For example, the frequency at which
the current gain of an FET drops to unity is referred to as the
cutoff frequency. In an approximate sense, the cutoff frequency is
obtained from

gm (78)

fT- 2xCgs

and is usually reduced by the presence of unwanted parasitic
elements. The quantity fT, when it is sufficiently high is
usually the driving force behind the development of new device
structures. The general expressions for fT which are used in the
design of a device depend in large part on the mobility model used.
This is clearly unsatisfactory, and the situation requires
assessment, which is difficult at this time. Frey, et al., using a
highly approximate approach to examining submicron transport in two
dimensions estimated fT for a 2-micron long, 0.25-micron gate
length device at approximately 60GHz.

More commonly, In its simplest description, fT is expressed
in terms of specific material quantities. For example, in the
Shockley model, it is proportional to the carrier mobility and
inversely proportional to the gate length.

fT A 2_ (79a)

Lg2  p
'S

Under conditions of saturation in velocity, this expression has

been estimated as

2ffs (79b)
fT 2 Lg Lg

and for Vs - 10 cm/sec, Lg - 0.25pm, fT = 66 GHz. Note: 0

velocity overshoot contributions should improve fT, as well as
the transconductance from which these expressions are obtained.
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The experimental situation on the gate-length dependence of
FETs is also somewhat uncertain on this matter. For example, a
recent study by Chao et al.2 6 , showed (1) an increased drain
current with shorter gates, (2) significantly larger pinch-off
voltage for shorter gate devices, (3) a slight'increase in the
transconductance of the shorter gate devices, and (4) the output
conductance of the short gate device was not necessarily larger
than that of the long gate device. The general conclusion of the
study was that by keeping other device material parameters
constant, no improvement would necessarily occur by going to short
gate length devices.

Whether the conclusions of the Chao et al., study are going to
be confirmed by a number of other studies remains uncertain. But
diagnostic techniques are required for determining the effect of
the space charge distribution on device performance and, in
particular, when the speed enhancement can be utilized. One such
set of measurements, which appears to be sensitive to the
distribution of space charge within the device are the small signal
circuit parameters. This was first demonstrated by Engelmann et
al. 26 , for longer gate length InP and GaAs devices. We review
this below for long devices and suggest this as a method of
examining the space charge structure of short gate length devices.
The method involves obtaining the self-consistent solutions for the
small signal microwave parameters of a device and identifying their
frequency dependence with specific space charge profiles within the
device. The calculation does not stem from the moments of the BTE,
which, of course, should be used. Rather, it is derived from the
standard drift and diffusion equations. In this case using
parameters appropriate to GaAs.

CALCULATION OF THE SMALL SIGNAL "Y" PARAMETERS

This calculation is a numerical one. The equations solved are
the two-dimensional continuity equation

an(x, t) (80)
-e ' + div• J 0at

the drift and diffusion equation

J-- e {n(x,t) v(F)- D(F)Vn(xt)} (81)
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Poisson's equation

V 2
#(x,t) - + e(n(xt) - no(x) (82)

and the relevant circuit equations. In the above X denotes the two
dimensional position vector. The FET configuration is shown in
figure 35, for a structure with a doping of 10 15 /CM3 , the low

doping was chosen to reduce computational time.

0

y -GATE
r.I---L G --- iPa

SDRAIN

~LSDF- I-

0

FIGURE 35. Two-dimensional device circuit configuration for the
small signal calculations. Relevant dimensions are

LG - 1.2pm, LSD - 10pm and H - 1.9 5 pm.

The small signal calculations are obtained as small time
dependent perturbations of time independent steady state
solutions. Since we are treating GaAs, the possibility of large
signal domain transit time oscillations must be considered. Since
this would only serve to complicate matters and render the concept ,
of small signal parameters specious, attention was concentrated on
thin "ND" product FET's that do not sustain instabilities [Grubin
et al., 1980]21.

The steady state or dc characteristics of the device were
self-consistently computed and are displayed in figure 36. Typical
carrier density profiles are represented in figures 37 and 38.
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Figure 37 displays results for a bias sufficiently high to generate -s
a high field domain under the gate contact.

POTENTIAL. */k

FIGURE 36. Steady state drain current vs drain potential for two
values of gate bias. Here Io - NoevpA and to - FpL.
Where vp is the peak gallium arsenide carrier velocity and Fp
is the threshold field for negative differential mobility.

I CHANNEL LENGTH

CHANNE
HEIGHT/ IDENSITY

N(x,y,f}=O

FIGURE 37. Projection of electron density within the FET.
Channel height increases toward the bottom of the
channel. Channel length is along a direction of

increasing x. Density, which is in normalized units.
increases in the downward direction. For this
calculation *G - 0.0. and WD - i-0to.
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CHANNEL HANNEL LENGTH

HEIGHT DENSITY

N(x,yt) z0

FIGURE 38. Carrier density for OG - -0.6 to and

TD - 0.4 to. The current density for this case 0
is ID = 0.0.

Figures 37 and 38, and their respective current, and voltage
values represent the starting point of the calculation.
Subsequently, a small signal square wave voltage (see e.g., figure
39) was superimposed on the drain contract potential, with the gate
contact potential fixed at its steady state value. The resulting

I "T
T

FIGURE 39. Representation of the small signal disturbance. A square
wave pulse is applied to the drain contact, altering the
drain contact boundary condition: *D - *D+S*D •

There is a subsequent change in the drain and gate
currents, 6 1D and 6IC .
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change in source, gate and drain currents are then computed subject
to the constraint

6Is(T) - 6Id(T) + SIg(T) (83)

The gate and drain current, and the drain potential are then
Fourier analyzed. The ratios for a fixed gate potential are
identified as the admittance parameters:

Y12(0) - 6IG(G) (84)

6 ID(O) (85)22(0 ) .- .")(06%D(n)

A similar exercise is performed for a perturbation on the gate
contact, with the identification of two additional admittance
parameters

Y11(0) -
6IG(O) 

(86)

Y*G (0)

SID(O) (87)Y 2( 0) - SP 08'G(0)

The "Y" or admittance parameters are dependent on the space 41

charge and potential profiles and are thus bias dependent. In
addition, it is generally assumed that, about a given bias point,
the small signal currents add in a linear way. Then: I

6IG - (Yi1 + Yi2) 6SG - Y12(6G - 6 D ) (88)

61D - (Y21 - Y1 2) 6*G + Y12(6G - 6 D  + (Y22 + Y12) 
6'D (89)

with the equivalent circuit as shown in figure 40. The terms
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Y11 + Y 2 are generally identified as source-gate admittance
parameters, while -Y1 2 is referred to as the gate-drain
admittance.

Y.

&V G yflbG 8 VO

FIGURE 40. General form of the FET intrinsic circuit model with
reference to equations 88 and 89:
Y0- " Y22 + Y12 * Y11 - +Y 1 2 " Y21 - V 1 2

and Ymi - V2 1 - V1 2. See also Cobbold (1970).28
Figure 5.3.

The advantage of this type of representation is that a
heuristic connection is often made to circuit elements as shown and
intuitive design models may be expanded upon as shown in figure 41,
which represents the first order equivalent circuit for small
signal calculations. This circuit, while commonly used, does not
adequately express the presence of high field dipole layers; as we
show below.

0~

F Cgd BiIGBII _______

FIGURE 41. First order equivalent circuit terms within dashed
border represent zeroth order circuit.

Selective "Y" parameters versus frequency are displayed in

figures 42 through 44 for a range of drain bias values and a
moderate value of gate bias 29 .
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0 0 0 JO 0 to 20 so

FVEsQUDA. FOEUDOCY

1,0 0.0-

0.5- .. .I .. I .... i -. 6 - . .I . .I. .ifi
6 10 20 30 0o 0 a 2 s

FEtNY FREOLMENCY

FIGURE 42a. Frequency dependent admittance parameters Y 12 and

Y22 obtained by Fourier analysis. The dc bias level

for this calculation are *Do - O.l# o.

fto - - 0.ito .

Y - PAR METE

2 -- 0

o0 ... - . .. .. . -2 . .... i.... I. .

1 '0 20 30 0 80 20 30
FREQUE CY FREQUENCY

I .. 0i

o t0 20 30 0 10 20 30

FRCQUEkCY FREQUENCY

FIGURE 42b. Frequency dependent admittance parameters Y,1 and Y21 .
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CHANNEL LENGTH
CHANNEL

HEIGHT
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FIGURE 42c. Projection of steady state electron density for this
bias level at which the admittance parameters were
obtained.
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FIGURE 43b. As in 42a but for *~Do - O'I%, t~Go -01o
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0.2- 0.5 I

0.0.5
- E

* ,

-0.2 - -T- rT T- 0.0
FE0 20 30 0 10 20 30
FREQUENCY FREQUENCY

0.2 0.0-

0.0 ' ,0.5-

0 to 20 30 0 10 20 30
FREQUENCY FREQUENCY

FIGURE "4a. As in figure 42, but for *Ho - -L.Oo.

0

0.25 0

0.00 .. .. 4  i 4

0 iO 20 30 0 10 20 30
FREQUENCY FREQUENCY

0.0-05

-0.2- u--irr-- r- 0.0 Tiri -- 1T-

0 10 20 30 0 10 20 30
FREQUENCY FREQUENCY

FIGURE 44b. As in figure 42, but for *jHa - -1.0 o.t
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CHANNEL CHANNEL LENGTH
HEIGHT

N(xi,y,t) = 10

N(x,y) :

FIGURE 44c. As in figure 42, but for IPHO -- 1.0 to.

In these figures, the admittance parameters are expressed units of
Go, where

Go-Noep0HW 
(90)

the frequency is in multiples of fo

f- 0.542GHz (91)

and the bias levels are in multiples of 4'o-3.2 kv/cmxlO 4cm-.32v.
Some broad general features are clear and these are expressed in
terms of the zeroth order circuit parameters of figure 41.

- -0 jflCgs - ifCgd (92) 4

Y12 jfCgd (93)
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Y210 - - Gm + JiCgd (94)

Y220 - - Gds + jflCgd (95)

We begin a discussion of the "Y" parameter with an examination
of drain components Y.2 and Y2 2. For a fixed gate bias of -0.1

normalized units and at low values of drain bias, jIM Y 2 2 1 < jIm Y 12 1.

This situation remains until a high field domain forms within the
channel and lIm Y2 2 1 ! uim Y1 2 1. The situation in which the
drain bias is fixed and the gate bias is increased, results in
movement of the depletion layer toward the bottom of the channel,
with jIm Y 22 1 

> tim Y121- Insofar as the zeroth order element

requires jIm Y2 2 1 - IIm Y121, at the very least, the

-2 *mCY -0) *0-1 _2 , 0 Z 0 .0 * 0

.0 I+ * GO = 0.1 *0
y- , 0.44

DO
2.5

10.0.160 "
0Q 7.5

o 5.0
Z

o 2 .5

< \ NO DATA
L "\, POINTS 1

10.0 X 1074 %

7.5 
%\ %

5.0 
%

2.5

10.0 i 10 ,,
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 "

FIGURE 45. Gate to drain capacitance, as obtained from Y1 2 , vs

(*DO - *GO)/Wo • Circular and triangular
results are for a fixed gate bias. Square and inverted
triangular data are for a fixed drain bias. For this
calculation CO - 3.25 x I02cHW/L.
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drain element Yo appears to require the inclusion of a bias
dependent capacitor.

Additional study of the imaginary part of Y.2 is shown next.
As seen in figure 45, the capacitance of the system undergoes a
precipitous drop. A feature also seen experimentally (Engelmann et
al., 1977)21. The broad features of this result were discussed
by Engelmann, et al, (1977)26, and is represented in figure 46.
Essentially, the presence of the high field domain is cutting off
the gate drain coupling.

Cgd

Ggd

FIGURE 46. Schematic representation of the gate-drain admittance
in the presence of a high field domain. Cgd
represents a small signal conductance whici exhibits a
frequency dependent region of negative differential
conductivity when a high field domain is present.

We recall that Cgd represents the gate-to-channel capacitance
on the drain side of the channel as indicated in figure 47, and is
a measure of the change in channel depletion charge as a result of
changes in drain bias. Now, while a capacitance change is expected

S

FIGURE 47. Schematic of the gate-to-drain capacitance as a measure a
of the change in channel depletion charge resulting
from changes in drain bias.
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as the edge of the depletion layer moves toward the bottom of the
channel, the enhanced drop in capacitance suggests that most of the '
modulation is across the dipole layer. This is illustrated in
figure 45.

There are basically two sets of data in figure 45. The bold
line is primarily for a moderate value of gate bias. The most
significant drop in capacitance occurs when a domain forms. The
situation when the increase in gate to drain voltage is a result of
an increased gate bias does not result in the dramatic decrease in
capacitance. For the latter case, dipole domain do not form. We
note that the qualitative features of this calculation are in
agreement with the experimental results of Engelmann, et al.,
(1977)26.

For the parameter Y2 2 , we simply note that at low bias levels
Gds>O, whereas at high values of bias, the results strongly
suggest a frequency dependent region of small signal negative
conductance, a feature consistent with the presence of high field O
domains.

We next consider Y11 and note again that to account for the
high frequency high bias behavior of Y,,, it is necessary that
Cds exhibit a frequency dependence which allows for a range of
small signal negative conductance. With regard to Im Y.., which
we write as

Im Y11 - - 0 C11 (f) (96)

we note from figures 42 and 44 that at low bias levels C., is
somewhat greater than twice Cgd. At high bias levels when
domains form C,,(0) is at least an order of magnitude greater
than Cd- Under low or moderate gate bias levels C,(O) does
not exhibit a precipitous drop in value. Rather, at first the
capacitance decrease corresponding to a movement of the depletion
layer toward the bottom of the channel. This was also the initial
behavior of the gate to drain capacitance. Further increases in
drain bias result in domain formation and space charge injection
into the depleted zone. The effective capacitance shows a
corresponding increase corresponding to an increase in the stored N.4
charge. This is displayed in figure 48. For the situation where
the net voltage increase is due to an increase in gate bias, where
no domains form there is the expected drop in capacitance, as also
reflected in the gate drain capacitance without domains. This is
also shown in figure 48. The experimental situation shows broad
agreement with the numerical results.
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U 22 , -' -01

00 0
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0 0.5 1.0 1.5 2.0

DO GO 0

FIGURE 48. Capacitance C ,,, obtained from Y,,, vs (qDO-*GO)/*o-
For this calculation Co - cHW/L. Note C,, - Cgs + Cgd.

The two remaining items of interest here are theoretical/
experimental comparison of the transconductance, and current-gain
cutoff frequency. Figure 49 displays the transconductance,
Re Y21, vs VDS - VGS,for two values of gate bias. We see

*1.0 GO$ 0.0

0.8 74
GO 0

0.4

0.20 0

O • " D• ! )/

0 0.2 0.4 0.6 0.8 1.0 1.2

*00 -*a0'/*0

FIGURE 49. Re Y2 , (in multiples of Co ) vs (*DO - *GO)*o"

There is saturation at high bias levels.
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the presence of near saturation in both sets of data. This is also
seen experimentally. Our data does not extend to high enough drain
bias levels to determine whether a corresponding decrease in
transconductance occurs. The current-gain cutoff frequency is
obtained from the expression

f- 0 Re Y21  (97)ft"2jrl M (T1, + w12)1

and is shown in figure 50. It is seen that saturation in fT
occurs under the presence of domain formation. The decrease in
fT at the higher drain bias levels appears to be associated with
an increase in the source-gate capacitance. Experimental
observations again show qualitative agreement with theory.

10.0 I

8.0o j

U 6.0
z
IaW

C:

4.0

U0

2.0

0 ' _ I £ I I i * _ * ,

0 04 0.8 1.2 1.6 2.0

DO0 VGO *

FIGURE 50. Cutoff frequency vs (*DO - *GO)/*o for

*GO ---0.o0
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THREE-TERMINAL DEVICES: TWO-DIMENSIONAL MOMENTS OF THE BOLTZMANN
TRANSPORT EQUATION

The two-dimensional simulations are new and as a result there
has not been much experience to rely upon. The boundary conditions
are more complicated insofar as parallel components of velocity are
also required to characterize the boundary and the contact. The
result is that the familiar "simple" one-dimensional contact
descriptions need rethinking. The next few figures will illustrate
some of the present observed features. The simulations have been
performed for a two-micron long device, with a gate length of
0.5pm with structure of figure 51. Because most of the

A e GATE C 0

SOURCE ORAIN

2/2-m

AYI

2tL

F XE

FIGURE 51. Schematic of "horizontally" placed submicron gate MESFET
used in submicron dimensioned BTE "moment" simulations

one-dimensional calculations were performed for doping levels of

5xl01 5/cm3 , the doping levels of the two-dimensional calculation
were taken at this value. The boundary conditions are listed in
Table 6.

Figure 52a displays the distribution of total charge within the
two-micron long device with a gate potential kept at ground, and a
drain potential at 1 volt. The source contact was an injecting
contact. The normal component boundary conditions were similar to
those obtained from the one-dimensional case. For the Schottky
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TABLE 6. Boundary Conditions

AB

CD -V'- - 0, otherwise derivatives are zero
EF v

BC V - V2 - , 0 2 0, ag O, T- constant

a a9
2- 2T2 - 0

DE a2(all) _ - constantaX2

SaV 0!T 2

FA V1 - constant. , -0, -- 0, T -1, 8X

a2V a2NV1 2 V -O, --- O, T1 - constant
12 x2  aX2

gate, the normal component of velocity was set to zero, and the
[-valley component of electron temperature was set to 9000K.
Thus some transfer was effected at the gate. The parallel
component of velocity was set to zero. What is apparent from these
calculations is the space charge accumulation at the drain
boundary, a feature already observed in the one-dimensional
simulations. This downstream charge accumulation is a consequence
of electron transfer and is likely to lead to reduced current
drives. An increase in drain bias serves to enhance the level of
space charge accumulation without any real improvement in current
level. The [-valley charge density is displayed in figure 52b,
and for this bias level, there is a certain degree of electron
transfer. Vithin the channel near the bottom of the device the
fractional component of Nr = 0.9N o . Again, most of the
current is carried by the [-valley electrons. The distribution
of satellite valley carriers is shown in figure 52c. It tends to
emphasize that a larger fraction of L-valley carriers are partaking
in transport immediately downstream from the gate contact than
within the channel, but their net contribution to the total current
is negligible. (There are also fewer total carriers in this
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N/5100 1
2.0 GAT E

N 1 . -

O. 5-]SOURCE

0.0. DRAIN 2.0

2.0

FIGURE 52a. Distribution of total charge within a three-terminal
device (distance scales are nonlinear, the depletion

region is approximately 1000A deep ), for a potential

of 1 volt on the drain.

GATE N r/0

0.0 DRAIN

A~.

2.0

FIGURE 52b. As in (a), but for [-valley.
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1. ~GATE XDI

0.00

2.0

FIGURE 52c. As in (a), but for satellite valley.

region.) In figure 53 we have included the result of a calculation
in which the boundary condition on the gate electron temperature
was increased to 1500*K to show how this alters the charge
distribution. At these bias levels no significant alteration in
current level was observed. The total charge distribution for
1.25v on the case is also displayed in figure 54a. The observation
is made of increased carrier accumulation at the drain boundary and
enhanced electron transfer (figures 54b and 54c).

GAT E 5,I ,o5/0-5-

0.0-

x Y

2.0

FIGURE 53. As in 52c. But for Tg - 1500"K.
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FIGURE 54c. Satellite valley population.

SCALING AND MATERIAL CONSIDERATIONS 0

There are two questions I want to address, and they have to do
with the kinds of materials we should be looking for. The guide to

this answer will come from the specific device goals. The question
of interest concerns the significance of super velocity materials

and how do we balance high speeds with sometimes reduced
mobilities. To examine these issues we return to the moment
equations as written in equations (51), (52) and (53). The first
thing we will consider is what we will refer to as intrinsic
scaling. This type of scaling is not dependent on device length
explicitly, although it enters the discussion through the relation -

x - v(t)dt (98)

We turn to equations (51) through (53), assume a constant field

across the device and set all other spatial derivatives to zero.

Then

A 1 8n (99)

i A 1 an m~vr
nl~mnvr - anr-,- -
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energy: -

a- ~ 2 (101)
nj - n;tE + dJv' 3b

We consider the situation as in Ref. 30 where all of the scattering
rates are altered by the multiplicative constant A, e.g.,

Ar = AAr (102)

while the primed scattering rates are kept constant. Thus, e.g.

tref ' tref/A (103)

We note that such materials as GaAs and InP are identified by their
scattering rates, and constant scaling is directly relevant to a
comparison of the two. We next consider the case where the
coefficients a and d are invariant. For a constant Vref, this is
achieved by assuming the product

tref Fref (104)

to be constant. This requires that

Fref ' AFref (105)

The first consequence of this scaling is associated with the steady
state velocity field curves. If

.

vo (F)

represents the steady state field dependent velocity, taken as
reference; and

vA (F) 0

represents the scaled velocity, then

vA(f) - vo(F/X) (106) p
In simplest terms this equations states that the magnitudes of the
steady state and saturated drift velocities are unchanged by this
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scaling. The low field mobilities differ by the factor A. In a
qualitative sense, many of the III-V NDR materials are subject to

this type of scaling. It would not stand up in a quantitative
sense because of variations in the phonon frequencies etc. In
figure 55 we sketch the select scattering rates for InP and GaAs at

room temperature. In figure 56 we display the scaled GaAs and InP

GaAs InP

i mom,
10131 ery

10
12

0 10 20 0 tO 20
ELECTRON TEMPERATURE T/3000 K

FIGURE 55. Comparison of r-valley scattering rates for GaAs and InP.

o GaAs

1.0 Vpeok: 2 .1, Ep: 4.0kV/cm"* InP

C 0.8 /VoeOk"2.7, Ep: 10 kV/Cn

0.6

0.4

0.2

0.0 
O.C 0.4 0.6 1.2 1.6 2 6 10 14 16 22 26 30

FIELD/E p

FIGURE 56. Normalized steady state field dependent carrier velocity.

Simple linear scaling does not provide linear velocity
scaling.88
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steady state velocity field relations. It is seen that linear

scattering rate scaling does not yield linear velocity scaling.

The next item of interest concerns the transient response.
Here with reference to equations (99) through (101) it is clear
that constant A scaling with

t' - t/tref

implies

vr(t,F) - vo(At,F/A) (107)

or in another form

vo(t,F) - vr(t/A,AF) (108)

Consider the situation where the material under consideration
is undergoing self-excited oscillations. Then the scaling law
states that if GaAs has an upper frequency limit of 150GHz, and it
were possible to design a scaled semiconductor material with A -
2, then the latter would have an upper frequency limit of 300GHz.
Similar remarks can be made with respect to small signal and driven
oscillators. Simulations with InP self-excited oscillations have
been performed and frequencies in excess of those found in gallium
arsenide were obtained.

With regard to the more familiar transient transport
calculations, as extrapolation from equations 107 and 108 yields
the results shown in figure 57. Thus, transport in materials with
enhanced scattering rates appears to approach equilibrium sooner.

-1.0

C o : (Io)VELOCITY VS TIME "r:2, F :16.8kv/Cm
E 0 orsr: 1, F : 9.4k,/cm(GoAs

0.0  ! r rI:0.5,F: 4.7kv/cm

o 0.4h ~ .

0
0 0.01

0 T/To (o 5 1.44 ps) 1.0

FIGURE 57. Scattering rate scaling as applied to velocity
transients.
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These conclusions, of course, must be folded into the fact that at

higher values of field the carriers are driven to higher values of

velocity and the scattering rates which are field dependent also

increase. In terms of a comparison to real materials, we are not

interested in scaled values, but rather in the response of two

dissimilar materials to the same value of field. A simple sketch

based upon previous comments is displayed in figure 58, which

displays an estimate of the velocity for the r-1 element at a

field of 18.8 kv/cm (dashed line). Note, the higher peak carrier

velocity. Also shown in figure 58, is the velocity versus distance

relation obtained through application of equation (98). The

1.0

ita) VELOCITY VS TIME p:2, F:18.kv/em

0.8 . P:I, F: 9.4kv/m(GaA&
I: ",:0.5,F: 4.7kv/m

0.6 ' ,

S 0.4 •

09 0.2 O.

o 0 -

- 0 0.5 1.0

0 T/T o (To : 1.44ps)

> .0 
V SN

- (Ib) VELOCITY VS DISTANCE

L) 0.6,

0. r4 o.5_
0

0 0.25 0.50 0.75 1.00 1.25

DISTANCE, (,. m)

FIGURE 58. Scattering rate scaling as applied to velocity

transients.

question is, how well do these very general comments, which can be

obtained from some very general scaling of the Boltzmann transport

equation, stand up against detailed numerical calculation. The

answer is displayed in figures 59 and 60, where the general scaling

principles appear to hold up fairly well.
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FIGURE 59. Drift velocity vs position in GaAs and InP for electrons .M
release at X - 0 into various uniform fields:
(a) GaAs, from Ruch [15]; (b) GaAs and InP, from Maloney
and Frey 3l.
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FIGURE 60a. GaAs transients. Solid curves denote impurity
scattering; Np - 101 7cm 3 .32
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FIGURE 60b. As in (a), but for InP.
32

The results of the above figure appear to suggest that for a
fixed submicron length the transit time versus distance should show
advantages for GaAs against InP. This is borne out in figure 61.

Indeed, these results should not be taken as noncontroversial.
There appears to be some differences between these results and
those of Maloney and Frey who conclude that InP will always show

some speed advantage. Indeed, based upon the Maloney and Frey
results, we concluded recently, the results shown in figure 62.
Based on figure 62, a calculation of

1 (109)
fT - (2x transit time)

for channel length of 0.4prm fT yields 114GHz for GaAs. It is

0.8
0.7 -i

E 0.6 - Gaos

0 5-z- 0.4

0

0 .2 -- -- -- -

0 05 ID I5 20 2.5 3.0

TIME, ps

FIGURE 61a. Variation of drift distance with time (GaAs).
Np==10 17cm 3 ---Np 0. Fields in kV/cm.3 2
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FIGURE 61b. As in (a), but for InP. 3 2

slightly higher for InP. At 2500 A, it is approximately 265GHz for

GaAs. For InP it is approximately 227GHz. But the numbers derived

form figure 61 would indicate that the initial transient must be

included in the material assessment. Thus, clear predictions based

upon uniform field calculations cannot be given.

4

-3 n

E

0 2

2 /10

I/L (10 4/cm

FIGURE 62. The effective, or time-of-flight, saturated velocity as

a function of the inverse channel length. The InP

curve is estimated from the data of ref. 
31.

3 3
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The next situation of interest concerns itself with extrinsic
scaling, where we are concerned with the effects of device length
for nonuniform field situations. To deal with this situation we
return to equation 52 and concentrate on the coefficients a and the
normalized scattering rate. (A similar analysis holds for the
energy balance equation). For extrinsic scaling.

Device Length (110)
tref Vref

Thus

eFref (111)a-
mref Ir Vref

and

Hr Vref (112)

xref r

With regard to the coefficient a, if the scattering rates are
constant, and Fref is constant, then a is independent of device
length. Insofar as b is independent of device length, as the device
length begins to decrease, the "non-drift and diffusion" terms

1.6 .25 m 9.6 .50.m
9.2 1.2

0.8 0.8
0.4 0.47

GaAs 0 0 05 1.0 0 " '0

N :SAO 5/cm 4.0 2.0 m
0 3.6

3.
F :.510 v/cm 'I.O m  3.2 I

- 2.8 U

2.4 2.4 0

2.0 2.0
1.6 - / 1.6
1.2 1.2

0.8 0.8
0 4 0.4

00 0.5 )O 00 0.5 10

ISTANCE/L

FIGURE 63. Effect of device length on electron transfer, for a

constant average field.
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begin to dominate. Additionally, the coefficient f in Poisson's 
equation is length dependent and as xref increases, the gradients
in F increase. These contributions, when coupled to the fact that
electrons need a specific device length to traverse before they
undergo electron transfer, leads to the following key results.
Figure 63 shows the calculated electric field distribution for GaAs
subject to an average field of 5kv/cm. It is seen that the highest
nonuniform field distribution occurs as the device length increases.

We note that electron transfer tends to be synonymous with low
current levels. This is displayed in figure 64. Additionally, two
other important features arise. First, there is the increased
drive current for the submicron dimensions. Second, there is the
absence of negative differential conductivity. A related question
of importance at this time concerns the choice of material. If a
material with an increased scattering rate were chosen, then simple
scaling theory suggests that to achieve similar current levels,
shorter device lengths are needed, and higher fields. If this

0.5

0

. 0.4

0.25I 0.

I 0.3 1.0

z

0.2

U

0 1 2 3 4 5 6
FO( V/cm)

FIGURE 64. Current density versus average field versus device length.

conclusion holds true then the achievement of the high InP
velocities may place extreme demands on available technology,
particularly, if very small gate lengths are required, as appears
to be the case.

The next type of scaling we consider is that of extrinsic
carrier density scaling. For this case, the important equation to
examine is Poisson's equation, and the relevant scaled quantity for
this case is the coefficient f of equation (64). This coefficient
tends to indicate that for a given value of average electric field
all results are unchanged if the product of carrier density and
device length are kept constant. 'NL' products are common in

95



examining transport in long GaAs diodes. They are, however,
irrelevant for submicron length devices in that they ignore the
fact the intervalley transfer is length dependent, as the results
in figure 65 indicate.

0,2jm .O m .--

No :5aI/C No = 5xo5/CM3

J 0.3 J J :0.25JR
R. 2.8

2.4
1 o2.0 2.0 .t f.6H 1.61

. 0 .8 o . ,
0.4 0.4

01 0
0 0.5 1.0 0 0.6 1.00

DISTANCE / L

FIGURE 65. Field and r-valley carrier density for an average
field of 5kv/cm. For this calculation JR - NOeVR,
where vR - l.OxlO8cm/sec.

One very general conclusion can be drawn from the above scaling
arguments, it is that the achievement of high speed submicron
length devices does not necessarily require materials with high
steady state velocities. High steady state velocities are
irrelevant for submicron devices. Rather what is needed, are high
mobility materials. For this case, it is clear that of the three
materials of interest, GaAs, InP and Si, GaAs has the clear
advantage. But there has been considerable interest in a variety
of other materials.

MATERIALS CHOICE

The situation with material choice is best illustrated by
several examples, but again the material choice is based upon
device application. If the device conceived is such that submicron
effects do not enter, then the steady state field dependent
velocity curves are the ones of interest, as illustrated in
figures 66 through 69. Note, particularly high values of field and
velocity associated with the InGaAs alloys (figure 66), in addition
to very high values of mobility. Also note the reduced mobility
for the AlGaAs ternary, as Al is introduced; for InPAs as arsenic
it introduced; and GaAsP, as phosphorous is introduced. The method
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FIGURE 66. Velocity-Field Curves for Gat..xIn1As at 3000K
with a doping level of 1016 cm-3 (From Ref. 31).
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FIGURE 67. Velocity-Field Curves for Ali..xGaxAs at 300*K

with a doping level of 1016 cnf3  (Ref. 31).I
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FIGURE 68. Velocity-Field Curves for InPi.. As y at 3000K with
a doping level of 1016 cm-3 . (Kef. 31)
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for calculating these field dependent curves is essentially similar
to the technique used for calculating the field dependent curves
for GaAs, InP, etc.

Because of the narrow band gap of some of these materials,
nonparabolic effects enter and additional care must be exercised in
performing the calculations, but basically a set of material
constants is needed for each binary component in the ternary
element. We illustrate this in figure 70 for the ternary
GaxIn1 _xA , where x represents the mole fraction of the GaAs
element. s

Figure 70 displays the band gap variation of the three
principle portions of the conduction band for GaInAs. We note that
InAs has the same r-L-X ordering as GaAs. Such is not the case
with AlAs. The band gap variation of these curves is represented by
(photoluminesence studier)3 9

Er - 0.422 + .7x + 0.4x2  at 2°K (113a)

Er - 0.324 + 0.7x + 0.4x2 at 3000K (113b)

2.0

eV GaxIn _X As X

1.5-

1.0- 
r

0 I 0
0 0.25 0.50 0.75 1.00

X

FIGURE 70. Energy gap vs composition for GaInAs.

where at room temperature for GaAs (x-l), Er - 1.43ev and for InAs
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(x-0). Er - 0.35ev. There is a clear presence of bowing in the band
gap variation with composition, but linear approximations for the L and X
band for X>.47 are useful (note: Ga.4 7 In. 63 As has the same lattice
parameter as InP)

EL - 0.38 + 1.73x (114)

4

EX - 0.3929 + 1.93x (115)

The above band gap variations is specific to GaInAs; there are,
however, fairly general rules4 ° often used for calculating other
terms. The lattice constant a is computed from

a - xaGaAs + (i-x)aInAs (116)

The effective mass is:

1 x + (i-x) (117)

M* m*GaAs m InAs

for each section of the conduction band. For the dielectric
constants

40

- x. [ + (l-x) "* O'1 (118)
, t oe, +2j GaAs ( o,a+2)

For the transverse and longitudinal optical frequencies

1 (119a)

r- (XWT 2 GaAs + [lX]WT2InAs)2

(119b)

wL - lOO

-100-
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To calculate the acoustic velocity U 40

( )-AGaAs-TGaAs (1 x)2WAs
a) &T2 _xIAIsWT TInAs

x(l-x) MC(MA+MB) 02 (120)

(MA+MC) (KB+MC) TGaAs TInAs

where

UGaAs _inAs (121)

aGaAs aInAs

and MA, Mp, MC are the masses of the constituent atoms. For
example, in GaInAs::

MA - MCA - 69.72 gm/mole

MB - MIN - 114.82 gm/mole
MC - MAS - 74.92 gm/mole

Intervalley phonons are obtained from a linear extrapolation of
the intervalley phonons of each of the constituent elements which
in turn are obtained by application of a set of selection
rules4 1. The selections rules were not obtained under hot
carrier conditions, and so it is unrealistic to suggest that these
be rigorously applied. Nevertheless, consider the intervalley
phonon from r(0O) - X(100). The selection rule is that an LO
phonon at X is involved when MIII<MV (e.g., GaAs). An LA
phonon is involved when MIII>MV (e.g., InAs). The phonon
frequency for the ternary is taken as:

Intervalley r-x phonon frequency

- xhwGaAs + (l-x)hwInAs (122)
rx rx rx

The intervalley phonon from r(0o) to L(11l) is an average of
LO and LA at L. Again,

f'OFL XhwGaAs + (l-x)hwInAs (123)

rL rL
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For the intervalley phonon from L(111) to X(100), an average of
the LA, TO and LO at L is used. Again,

hwLX - XhwGaAs + (l-x)AcInAs (124)

IX LX

From X(100) to X(100), from L(111) to L(ll) for equivalent
intervalley scattering, a linear extrapolation is used. Similarly
for the nonpolar intervalley phonon (LO+TO) a linear extrapolation
is used. The other remaining quantities of interest are the
deformation coupling coefficients all of which undergo
extrapolation.

0
Another feature of importance here concerns material choice

associated with nonparabolic bands. In all of the calculations we
have assumed a parabolic dispersion relation, namely

E fi2k
2  (125)

2m*

A simple extension to nonparabolic is generally given as

E + E 2 1 2k2  (126)

Eg 2m*

where Eg is an effective energy gap. The significance of this is

6.0 '0 ''''''''o j:

5.0

4.0 4 3
10 M 3.00 ¢m

2.0 - ,"

1.0 ,.o'
0

0 .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.6

FIGURE 71. Drift velocity as a function of normalized field, X:

(1) InSb at 290"K, nonparabolic calculation; (2) InAs
at 300"K, nonparabolic calculation; (3) InSb at
290°K, electron, parabolic band; (4) InAs at 300"K,
parabolic band4 2.
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that the effective mass increases with increasing energy. The
consequences of this is that negative differential conductivity in
the absence of electron transfer can occur. On the basis of the
above expression it is clear that nonparabolic effects, while
important for GaAs, will be even more pronounced for InAs. The
effects of nonparabolicity on the polar phonon scattering were
discussed at a very early stage by Matz'2 , and his results are
shown in figure 71, where we see a clear contribution to NDR.

A general discussion of NDR due to nonparabolic energy bands
was presented by Harris and Ridley43 who applied their results to
PbTe at 77 K. The general applicability of their conclusions are
discussed below. Harris, et al4 used the displaced Maxwellian
approximation, and examined scattering due to acoustic and polar
optical scattering. The results of their study are summarized in
Figure 72. The symbols in their paper have the following
significance. W is the ratio of the low field acoustic to polar
optical mobilities:

W a 
(127)

Ape

when W - m scattering is purely polar optical, when W - 0
scattering is purely acoustic. When W - 1 there is a mixture of
acoustic and polar scattering. The bold lines signify calculations
with nonparabolic contributions. The dashed lines are for purely
parabolic bands. The nonparabolic contributions indicate an
avoidance of runaway.

20

0 10 0 2zO 300

FIGURE 72. Field dependent variation of velocity for different
combinations of acoustic and polar optical scattering.

Dashed line denotes parabolic model, solid line denotes
nonparabolic model43.
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Another important contribution to transport is the alloy

scattering. Hauser, et al1" treated a completely random array of
allow scatters whose scattering rate increased with increasing
electron energy. The results indicate a decrease in peak velocity
and in the magnitude of the negative differential mobility.

The velocity - field curves of a variety of ternary compounds
were shown in figures 66 through 69. We briefly reconsider AIGaAs.
The interesting feature of this material is that for pure AlAs, the
lowest portions of the conduction band is at X (see figure 73) Of
particular interest, is the crossover, as reflected in figure 73.
Figure 74 displays a normalized conductivity versus aluminum
concentration where it is seen that (1) the lowest conductivities
occur for highest aluminum concentration, and (2) the precipitous

3.0

2.50

>G'af AlAs

2.0

1. 5

0.0 0.2 0.4 0.6 0.8 1.0

At FRACTION X

FIGURE 73. Energy band gaps (r,X, and L) of Ga 1 -xAlxAs (at

300 ° K) calculated from Eqs. (6)-(S), as a function

of Al concentration x. Dashed line represents the L
band 45.
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Al FRACTION X

FIGURE 74. The data points represents normalized conductivity of
Gal.xAlxAs vs Al concentration. A direct-to-
indirect bandgap crossover occurs at xc - 0.45. The
solid line corresponds to a three-band (r, X, and L)

calculating, only r' and X are considered in the
calculation resulting in a dashed line. The dot-dash

line corresponds to xc - 0.37, as explained in Ref. 45.

drop in conductivity occurs near the crossover. These results are
also reflected in the field dependent velocity relation (figure 67).

At this junction we reiterate a point made earlier for
parabolic bands, namely that central valley transport appeared to
dominate device behavior. In figure 75a the calculated field

10 , .

.07

\.9.16 9

t ,0 / \ 66

I6 AsIn x .:75 e

: 6E 1 .116eV. n

ELECTRIC FIELD (V/cm)

FIGURE 75a. Calculated velocity-field curve for Alo. 2 5 no. 7 As

values along the curve show the percentages of
electrons in the upper (111 and 100) valleys47 .
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dependent velocity for Al0 .26lno.1 6As is shown along
with the percentage of carriers in the subsidiary valleys. In I
Figure 75b the contribution from the F-valley velocity relative
to the total velocity is shown. It is seen that transport is
dominated by the central valley. Note: the calculated energy gaps
for AlInAs are displayed in figure 75c. There is a discrepancy
between the L-valley AlAs results of this calculation and that of
figure 73. The calculations for gallium indium arsenide show a
similar behavior, as displayed in Fig. 76. A

10 * * 11 •

> /AE : I.II6eV .

'a 6-(000) VALLEY ONLY_ f

ALL VALLEYS

I 1 I I | i I I it i a I A102  103  104  1O5

ELECTRIC FIELD (V/cm)

FIGURE 75b. Comparison of velocity-field curves for Al01.2sIn 0 .7 5 As

use g central valley only and using all valleys'.

4

< AlAs 2 - 100) InAs

0
z

4%

0 .2 .4 .6 .8 1.0

X, COMPOSITION OF Al In A s
I-K K

FIGURE 75c. Calculated energy gaps vs composition for AllxInxAs47 .
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FIGURE 76. As in figure 75b, but for Gao.4Ino. 6As
47 .

To tie the varieties of field dependent transport coefficients
together, several figures of merit have been proposed. One, put
forth by Hauser, classifies materials in terms of the peak drift
velocity obtained from polar phonon scattering including
nonparabolic effects. This was estimated by Hauser, et al 42 as

S o+ fj°wo 2 (128)vp_< VMAX M2 + tan J

.4
E InSb I s (A, In)AsS o9

0
2O :(Go~ln ) (P. As)
- 2 (Go,ln)As:

3 0I

20

Go Sb x 9
WW 0 o

> 2 x

o CENTRAL VALLEY LIMIT, EQ.(.3)

0. x MONTE CARLO RESULTS

0 .4 .8 1.2 1.6

BANOGAP (eV)

FIGURE 77. Calculated upper limits to peak velocity from equation

C' (128)42.
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The results of the above expression for a variety of different
materials are summarized in Figure 77, where we note that the
highest peak drift velocity is for the material InSb.

In another study (Ferry4s) summarized in Figure 78 the high
field saturated drift velocity was plotted as a function of
8hw/3mn*. The curve in figure 78 follows the relation:

1

V - (8wo/3,nm*)i (129)

'oo

0 2 4 6 a 10

(04, /3rM*) (1014 CM/, . )

0

FIGURE 78. Saturated velocities calculated here are shown as
functions of the parameter relating to energy
relaxation.

BOUNDARY CONDITIONS TO DEVICES

We close this lecture series with a more detailed discussion of
field nonuniformities.

While most of the previous discussion has tended to focus on
the importance of field nonuniformities for realistically assessing
device performance only a small fraction of the discussion was
devoted to the single most important contribution to these field
nonuniformities - boundary conditions. Here we provide a brief
review of its influence on the behavior of two-terminal NDC
devices. Figure 79 displays typical boundary-dependent data from
three different gallium arsenide two-terminal devices. The lower 0
portion of each diagram displays current versus voltage

108 - I
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characteristics, while the upper portion shows voltage versus
distance at one bias point. Figure 79a shows measurements for a
device in which the metal contacts are far removed from the active
region of the device. The current-voltage relation is relatively
linear until a point where current oscillations occur. The field
profile just prior to the oscillation is relatively uniform within
the active region of the device, and is near zero at the ends of
the active region. Figure 79b represents a set of measurements in
which the metal contact abuts the active region of the device. The
current-voltage characteristics remain linear to threshold which
again is manifested by a current oscillation. Notably different
here is the lower average field prior to the instability and the
enhanced voltage drop at the cathode. Figure 79c displays results
for another device with a metal contact abutting the active
region. For this case there is a sublinear current voltage
characteristic and no instability. The probed voltage versus
distance shows a large voltage drop at the vicinity of the cathode.

The electrical characteristics associated with Figs. 79a
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FIGURE 79a. Probed voltage versus distance, and current versus
voltage for a two-terminal GaAs device with low
boundary fields. From Ref. 48.
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FIGURE 79b. As in Fig. 79a but for a metal contact abutting the
cathode.

00

4-200

~I50.:
0

o 50 .
a. 

0
0 .1 .2 .3 .4

PROBE POSITION (MM)
I.. 4

W: 145v

W '225 -v
':PROBE POINT

a.

0EIlR OTG
0.4 100200300

SAMPLE PWS SERIES

(C) (VOLTS)

FIGURE 79c. As in Fig. 79a but for a metal contact abutting the
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through c have been described as representative of "ohmic
contacts". "slightly blocking contacts" and "strongly blocking"
contacts, respectively. One of the earliest models employed for
explaining these results assumed a "pinned" value of cathode
electric field. Other models in which the cathode conductivity or
doping profile was varied have also been suggested with varying
degrees of success. The "pinned" cathode field model, discussed
below, developed partially as a consequence of the way the
equation's current instabilities was written. Here the continuity
equation is rewritten in one dimension,

J(t) - q(nv - Dah + a(130)

where J(t) is the total current, and rewritten, again using
Poisson's equation, as

[n XF D F 2_ (131)

J(t) - qNov + r - - x . + aF (

This is a second order nonlinear partial differential equation on E
requiring two boundary conditions and one initial condition.

Solutions to equation (131) have been used successfully to
simulate device results similar to those of figure 79 for gallium
arsenide. Qualitatively similar results occur for solutions with
cathode fields F(-O,t) falling within any of the following three
groups:

< 0 < F(x-O,t) : FTH, FTH ( F(x-O,t) < 4FTH, F (x-O,t) > 4FTH.

Where FTH is the threshold field for negative differential
mobility. The simulations with pinned fields falling in either
group 1, 2 or 3 yield electrical characteristics similar to those
of figures 79a, b and c, respectively. The crucial feature of this
model is that the cathode field is pinned, necessitating that any .8
instabilities in current occur at a critical value of current
density. The field profiles associated with cathode fields in the ,6
range

< 0 < F(x-0,t) < FTH, and FTH 4F(x-O,t) < 4FTH

0

are sketched in figure 80. For reference, a velocity field curve
with velocity scaled to current as qNov(F)-Jn(F), and with a
region of negative differential mobility is also included. Figure
80 is understood as follows: The second column of each section
shows the electric field versus distance profiles. F(x) begins
with a value Fc at the cathode and extends downstream to a value
Fb. By current continuity, the current everywhere within the
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M3

device is given by J-q Nov(Fb). For J < Jn(Fc), first row,
a region of charge depletion forms near the cathode for Fc below
and within the region of negative differential mobility (NDH).
Increasing the current until J = Jn (Fc), second row, introduces
charge neutrality everywhere for Fc < FTH. However, because F
is a double valued function of V, for Fc within the NDM region;
approximate charge neutrality exists near the cathode for

J n(Fc), and for regions sufficiently far downstream from
the cathode. Charge neutrality breaks down between these two
regions. Finally, for J > in (Fc), third row, an accumulation
layer forms near the cathode. For figure 80a, the accumulation
layer is stable until the bulk field exceeds FTH. For Fig. 80b,

0
(a) ,(b)

F F DEPLETION LAYER

F

9 J<Jn(Fc) CURRENT DENSITY DISTANCE x 0

LL F

" J :J(Fc EXTENDED OR LOCAL

IX - I/c - F

J >JIFd J >JVQF

ACCUMULATION LAYER 0

FIGURE 80. Boundary and bias dependent field profiles for
materials with a region of negative differential
mobility48.

the accumulation layer, followed downstream by the depletion layer
is often unstable and leads to cathode originated instabilities.

The situation corresponding to Fig. 79c is often represented by
very high cathode fields. The field profiles are those appropriate
to a wide region of charge depletion near the cathode. The field
profiles are stable.

The pinning of the cathode field is not necessarily common,
however, to all semiconductor devices. For example, while it was
also applied to InP devices, where it worked for a significant
number of cases, a broad class of InP device behavior could not be
accounted for through it's use 1 3, 4 . The latter showed anonymously
high efficiency and low dc current levels. Spontaneous Gunn type
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oscillations did not occur. Rather, device operation required a
tuned circuit. InP device operation was also thought to depend
critically on the cathode boundary condition, and the experiments
were explained through a fixed cathode conduction condition.
The distinction between "pinned" cathode field and "pinned" cathode
conduction current is placed in perspective in figure 81 and in the
following equation

J(t) - Jc(Fc) + d(132)
Jc(F) ~dt

U

t: A

z

InJ

W

U

0

0 Ep
ELECTRIC FIELD (E)

FIGURE 81. Cathode current density, from Equation (133).

Equation 132 is the equation for total current through the boundary
to the device. Jc(Fc) represents the current-field relation at
the cathode, also referred to as a control characteristic which may
be expected to differ from that of the semiconductor device. Two
such types of curves are represented by curve A and curve B of
figure 88. Curve A is closely related to the pinned cathode field
model while curve B is associated with the pinned cathode current
model. The similarity in "form" of curves A and B to,
respectively, moderate barrier height tunneling and thermioriic
emission dominated contacts is deliberate, and the equation used to

arrive at these curves is shown below.

Jc(Fc) - -JR (exp[-qFcLc/nkT] -exp[-(I/n -l)(qFcLc/kT]) 
(133)
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which was adapted from studies on the unalloyed metal/semiconductor
contactsO. It's use here presumes a similar description. For
the unalloyed contact fnu is the ideality factor and describes the
contact as dominated by thermionic emission (nl) or by tunneling
(n >l). JR is the reverse current flux and may be related to the
barrier height phenomenologically through the Richardson equation.

Detecting a particular contact effect on a device is a
difficult procedure. For long devices current voltage
characteristics as represented by figure 79 are often signatures of
a contact classification. For short devices proximity effects
introduce an additional complication and current-voltage
measurements are less valuable. One type of measurement which may
serve to provide information about the boundary is a noise
measurement.

Here the situation to envision is that if the field is pinned
within the negative differential mobility region, increasing the
bias will result in an amplification and the noise will increase.
If an increasing the bias results in carrier injection into the
device, the field at the cathode is likely to decrease and the
noise is expected to decrease. While these results should be
folded in with the field dependence of velocity and diffusion, a
simple analytical noise calculation assuming a three piece
approximation to represent GaAs has been performed. 0

In this calculation, the "impedence field method"6' is
applied to calculating noise due to thermal velocity fluctuations
amplified within the device. The mean squared noise voltage per
unit band width is computed,

( -Z) - 4q2 IVZ12 ND d(vol), 
(134)

vol

where VZ is the impedence field vector. The calculation was
performed for a ten-micron long element with a doping of
105/cm3 . The element sustains the field profile with a
cathode depletion where it is seen that the NDM region increases
with increasing bias. The calculations, which are discussed in
detail elsewhere, [Ref. 29] are expressed in terms of the noise

NVN 2  1 (135)

NF - I + ---- ) 4k°TIR1
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figure 51 where R is the real part of the device impedence. The
results of the calculation are displayed in figure 82 where the
noise figure is sketched as a function of bias current and transit
angle. The

It0

100- 0.48

90-

80 I :\../ 4

60 ' :0.4860

20.4". 50 - ...."

40. 0.47....= T........
Z 30 -

0 .44

20

0 /2 VT 37r/2 2v

TRANSIT ANGLE

FIGURE 82. Noise figure versus transit angle and current.

results appear as a signature of the effects of the cathode
boundary. First, at low values of transit angle 0 - wT(A),
where T(A) is the transit time across the negative differential
mobility region, the noise figure increases with increasing bias.
This corresponds to an increase in the length of the negative
differential mobility region and enhances amplification of any
fluctuation originating there. More interesting structure is
present at higher frequencies and higher bias where the noise
figure increases and then shows a singularity. On the other side
of the singularity there is a "U"-shaped region ending again at a
singularity. The strong increase in noise figure represents the
approach of IRI - 0. Here at low frequencies the real part of
the impedence is positive, and becomes negative at frequencies
somewhere between x < 0 < wT. In going from positive to
negative values it passes through zero, hence the singularity. The
frequency range for small signal negative resistance increases with
increasing bias, reflecting the broadening of the negative
differential mobility regions - a broad "U"-shaped region
appears. Both the increasing noise figure at low frequencies, and
the "U"-shaped region at high frequencies are characteristics of an
increasing depletion layer width. Note that increasing the bias
still further will result in an electrical instability.
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The discussion of the above sections dealt with devices whose
lengths were typically lOga-long or longer and the analysis was
through the drift and diffusion equation. For near and submicron
length devices the Boltzmann transport equation is required. A set
of one dimensional steady state calculations are displayed below,
using the moment equations discussed earlier. The boundary
conditions for this problem are stated below

14

a log N, - -A (136)

V1 - -PcF (137) 0

T1 - B (138)

aN2 aV2 T2 (139)
X -~ T- - - 0

The boundary condition represented by Eq. (136) dictates the
slope of the r valley carrier density downstream from the
cathode. Thus for "A" positive (negative) local charge
accumulation (depletion) occurs at the cathode boundary. The
carrier velocity within the interior of the device is governed by
the assigned scattering rates. The velocity of the entering
carriers will, in general, differ from that within the bulk. The
assigned entrance velocity is governed by Eq. (137). The
temperature of the entering carriers is assigned a constant value,
represented by Eq. (138). "B" is generally greater than, or equal o
to 300 K and is a measure of the mean thermal energy of the central
valley carriers. As in the discussion of Fig. 80, the results are
placed into three categories, "ohmic", "slightly" and "strongly"
blocking contacts. The "ohmic" results are shown in Fig. 83, for a
2.Opm-long structure with a doping of 5xlO'5/cm3 .

For "ohmic" boundaries an appropriate set of constants are:
A-0.2,pc-12,000cm2 /Vsec, and T, - 300°K. For this case
carriers enter the device with speeds greater than that associated
with the central valley mobility. Additionally there is an
accumulation of carriers at the boundaries, resulting in low values
of cathode field. The field starts off at nearly 1kv/cm and
approximately 2500 A must be traversed before significant transfer
occurs. Increased transfer results in a lowering of the mean
carrier velocity, necessitating an increase in mobile charge as the
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mode is approached. The average velocity across this device
obtained from the relation

j (140)
<>- qN0o

is <v>-l.78x107 cm/sec, with No-5xlO16/cm3 .
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FIGURE 83. Distribution of field and carriers for ohmic
boundaries, with an applied bias of 2 volts. From [14]
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Lowering the cathode mobility to a value below that associated
with the F-valley results in a more rapid dispersal of carriers,

and cathode adjacent charge depletion, associated with slightly
blocking contacts, occurs. This is seen in figure 84 for A--0.11,

PC-6000 cm2 /Vsec, and T-300K. It is noticed that the
cathode field for this case is approximately 4kv/cm, which is
higher than that associated with the "ohmic" contact condition of
Fig. 83. There are, however, important similarities between
figures 83 and 84. In both cases the carriers adjacent to the
cathode are, for all practical cases, r-valley electrons. Very
little transfer, which is determined by carrier energy
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FIGURE 84. As in Fig. 83, but for a partially depleted cathode
boundary. [From 141
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(temperature) has occurred. In addition, sufficiently downstream
from the cathode the carriers appear to be ignoring the cathode
condition and are dominated by the downstream voltage drop, whose
spatial distribution is about the same for both. The average
velocity for this case is <V>-l.75xlO7 cm/sec, slightly below
that of figure 83.

A significant change occurs when the mean energy of the
r-valley entering carriers is elevated. For the parameters of
figure 84, but with T,-1200 k, a substantial amount of transfer
occurs at the cathode, resulting in a lowering of the current
through the device. The cathode is approximately 7kv/cm, higher
than that associated with figure 84, and the downstream field is
lower (see figure 85). The average velocity of the carriers in
this case is lowered to 1.28x107cm/sec, even though the central
valley carriers are traveling at higher speeds.
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FIGURE 85. As in Fig. 84 but with an elevated cathode electron
temperature. From (14]
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The presence of moderately high cathode fields is attractive if

a sufficient number of carriers can be retained in the central

valley where they can sustain high transit velocities. While this
case is discussed in more detail below, the simple ruse of
injecting excess carriers into a device with the contact conditions
of figure 85 does not always yield the sought after current
levels. This is illustrated in figure 86, where now A-0.2. Here,

the excess charge serves to lower the cathode field, which does not
change the downstream characteristics in any significant way. The

average velocity for this case is virtually unchanged when compared
to figure 85. In this case vAV-l.30xlO7/sec.1r
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FIGURE 86. As in Fig. 85, but for injecting boundaries Ilior
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The situation of a strongly blocking contact is illustrated in
figure 87 for A-9.0, pc - 1000 cm/Vsec, and T-3000 K. For
this case virtually all carriers are swept away from the cathode,
with the satellite valley carriers accounting for most of the
transport in the transition region. The cathode field is extremely
high, approaching 60kv/cm. The average velocity is approximately
zero.
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FIGURE 87. As in Fig. 86, but for a strongly blocking contact.(From 14]

In addition to determining the distribution of carriers, etc,
boundaries through their influence on the field distribution, also
affect current transients. This was shown for an accumulationboundary in Fig. 20. It is shown for a depleted boundary below,

where a calculation was performed for a five-micron element with a
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0

high cathode temperature, T.-1200. The transient results which
are displayed in figure 88, and are expressed in terms of a mean
velocity. The detailed field profiles are shown in figures 88 and
89. We note, approximate saturation in current, as displayed in
Fig. 88. A significant voltage drop in the vicinity of the
cathode, as displayed in Figs. 89a and 90a. Note that as the

4 <V> e( IOeW Ds/c)
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0.5 - V
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> 0.5 -m-1.5 v

0
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FIGURE 88. Transient current versus time for the indicated voltage
change.
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FIGURE 89a. For a bias of l.5v, steady state distribution of:
field.
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FIGURE 89b, c. For a bias of 1.5v, steady state distribution of:
(b) r valley carriers; (c) total carriers.
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FIGURE 90d, e. As in Fig. 89 but for a bias of 2 volts.

voltage increases a region of local charge neutrality is forming at
the cathode. Insofar as the r valley carriers are significantly
depleted, the cathode region is rich in satellite valley carriers.
But the distribution of velocity, as displayed in Figs. 89e and
90e, indicate again that most of the current is carried by the r
valley carriers. What is clear from these figures is the apparent
migration of the depletion layer toward the anode boundary, a
situation similar to that obtained from the drift and diffusion
equations.

ALTERNATIVE SOURCES OF FIELD NONUNIFORMITIES

All of the above calculations have tended to focus on the role
of the cathode on device performance. Several calculations shown
below illustrate the influence of selective reductions of "notches"
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in doping. One calculation is for a 2#m-long device with an 8000
A notch at the anode boundary (figure 91). The second was for a
device with a narrow notch (figure 92). In both cases the electric
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FIGURE 91. Long 8000*A notch anode. I - lv.
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FIGURE 92. Narrow 4000*A notch is near anode P - I v.
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field showed an excess voltage over the notch along with
significant transfer. The current level was higher for the narrow
notch device and again most of the current level was carried by the
r-valley carriers.

The situation when a section of periodic notches is introduced
is shown in figures 93 through 95. In figure 93, the device is
2jm-long with an applied bias of l.Ov. Two notches were used

GAMA VALLEY TELPCOIIt E TI 300
e

S. I[OVOL T"EP. T.

022

!OSTAMCE

FIGURE 93. Double notch 2i-long device. I' -1v.

here. Comparing the results of Fig. 93 with that of 94. it is seen
that the r' valley velocity is higher in the former case, as is
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the current level. Figures 94 and 95 are for 3 and 4 notches
within a one-micron long device. Each with an applied bias of
.8v. In each case as the number of notches increases, the
modulation of carrier density decreases, although not the field, as
indicated in Fig. 95b.
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FIGURE 94. Repeated overshoot , (a) carrier density and doping

profile, (b) gamma valley carrier velocity. <F> - 8Kv/cm.
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The experimental situation is such that, with the exception of
long compound semiconductor devices, there is very little data on
the role of boundaries and contacts to submicron devices. The
reason for the paucity of data lies in the fact that most submicron
devices are three terminal devices designs and the third terminal
tends to mask the role of the contact boundaries. This is
unfortunate in that it is likely that two terminal device
measurements will indicate what can be achieved in controlling the
entrance dynamics of the carriers. To date, most two terminal
device measurements on simple device structures have concentrated
on the role of transport within the device, and raise the question
of whether "ballistic" motion is possible. Based on the history of C
vacuum tube dynamics it should be recalled that, if transport is
ballistic, the electrical characteristics will be controlled by the
contacts.

The situation in submicron devices is further complicated by
communication between the up- and downstream contacts. Thus is may 0
be expected that the influence of a blocking contact on the
electrical characteristics of long and submicron devices will be
different. For submicron devices simple current voltage
measurements may be rendered useless as a diagnostic tool. This is
certainly not the case in long devices.

The role of numerical simulations in these boundary and device
studies has been to act as surrogates for measurements that are not
feasible. In one case, obtaining cathode boundary fields from
measurements was not possible. Thus for long devices the
sensitivity of the numerical results to numerical changes in the
boundary conditions, when coupled to experiments, provided the key 0
to the role of contacts on device behavior. For submicron devices,
the difficulties of direct correlation of experiment with specific
transport phenomena are apparent and simulation through parametric
studies will provide a key to the role of boundaries. But the
description of transport on a submicron scale is still inadequate
and the descriptive role of boundaries is correspondingly weak.
For example, most space charge dependent problems still treat the
background as a "jellium" distribution. The discrete nature of
impurities is ignored, as are structural variations in the
contacts. The extent to which this affects such measurements as
current-versus-voltage is yet to be determined. Notwithstanding
these uncertainties, a considerable amount of information can be
obtained by extrapolation from the ideal cases which can provide
bounds on the limits of transport through both the boundary and
active region of the device.
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